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ABSTRACT

A new method for generating variance reduction parameters for strongly anisotropic, deep-
penetration radiation shielding studies is presented. This method generates an alternate form of the
adjoint scalar flux quantity, φ†

Ω, which is used by both CADIS and FW-CADIS to generate variance
reduction parameters for local and global response functions, respectively. The new method, called
CADIS-Ω, was implemented in the Denovo/ADVANTG software suite, and results are presented
for a concrete labyrinth test problem. Results indicate that the flux generated by CADIS-Ω incor-
porates localized angular anisotropies in the flux effectively. CADIS-Ω outperformed CADIS in
the test problem while obtaining accurate results. This initial work indicates that CADIS-Ω may
be highly useful for shielding problems with strong angular anisotropies. A future test plan to fully
characterize the new method is proposed, which should reveal more about the types of realistic
problems for which the CADIS-Ω will be suited.
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1. INTRODUCTION

Efficiently modeling radiation transport in deep penetration shielding problems is essential to the safe
operation of many types of nuclear facilities, as well as the development of monitoring and detection
systems. We would like to be able to perform such calculations with Monte Carlo (MC) methods,
but it can be quite challenging to obtain acceptable statistical uncertainties in the computed tallies.
Thus, many variance reduction (VR) strategies, some of which we will discuss, have been developed
to facilitate accurate calculations in reasonable times.
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Problems that exhibit a strong degree of angular anisotropy in particle flux tend to be even more chal-
lenging for effective VR. Many existing VR methods do not include angular information in their tech-
niques, and therefore do not work well for these problems. Some VR methods do include angular
information, but, in general, these methods have narrow applicability and/or are difficult to use and/or
are computationally costly—rendering them inadequate as general tools.

With the goal of developing a method to easily, reliably, and inexpensively solve fixed-source prob-
lems that exhibit a high degree of angular anisotropy, we have developed a new method that builds on
the Consistent Adjoint Driven Importance Sampling (CADIS) and Forward Weighted-CADIS (FW-
CADIS) methods [1], which we will jointly refer to as FW/CADIS. FW/CADIS uses scalar flux es-
timates from a deterministic calculation to create VR parameters for use in MC. Our new method
uses a forward-weighted adjoint scalar flux based on a normalized contributon flux instead of a stan-
dard adjoint scalar flux, thereby including more angular information. We are calling the new methods
CADIS-Ω, FW-CADIS-Ω, and FW/CADIS-Ω for both methods jointly.

We have implemented CADIS-Ω and tested it on an optically-thick source-detector labyrinth demon-
stration problem. This demonstration problem has characteristics that are particularly challenging for
existing VR methods and provides an opportunity to deeply investigate differences between this new
method and CADIS. We compare analog, standard CADIS, and CADIS-Ω calculations. Initial results
show that for problems with strongly anisotropic behavior, CADIS-Ω outperforms traditional CADIS.

This paper begins with a background (Section 2) of important concepts relating to VR and existing hy-
brid methods for deep-penetration radiation transport. We then provide the context of existing methods
in Section 3. Section 4 describes the mathematical foundation of our proposed method and the soft-
ware that we used to implement it. The results and accompanying discussion are described in Section 5.
Section 6 presents our future test plans and details of how this plan will characterize the application
space beyond this single demonstration test. We conclude in Section 7.

2. BACKGROUND

Many modern radiation transport codes offer VR capabilities that employ an importance map—a mea-
sure of how important a particular region in a MC simulation is to the tally being computed—to perform
VR. Generally, the importance of a cell can be defined as the ratio between the total score of particles
entering the cell to the total weight of the cell [2]. By generating an effective importance map for a
system, the MC calculation will have faster time to solution, a reduced variance, or both.

Importance maps can be generated a number of manners, but a particularly effective method is to use the
solution, φ†, to the adjoint formulation of the transport equation. The solution to the adjoint equation
has long been recognized as directly corresponding to how influential a given source particle will be
on the response function, defined as the adjoint source. In fact, Kalos [3, 4] and others have shown
that an exact solution to the adjoint equation would result in a zero variance MC solution. The steady



state, fixed-source forms of the forward and adjoint transport equation are shown in Eqs. 1a and 1b,
respectively, where ψ(~r, Ω̂, E) is the angular neutron flux, Σt is the total macroscopic cross section,
Σs is the double-differential scattering cross section, q is a fixed source, and superscript † indicates
adjoint quantities.

[
Ω̂ · ∇+ Σt(~r, E)

]
ψ(~r, Ω̂, E) =

∫ ∞

0

dE ′
∫

4π

dΩ̂′ Σs(~r, E
′ → E, Ω̂′ · Ω̂)ψ(~r, Ω̂′, E ′)

+ q(~r, Ω̂, E) (1a)[
−Ω̂ · ∇+ Σt(~r, E)

]
ψ†(~r, Ω̂, E) =

∫ ∞

0

dE ′
∫

4π

dΩ̂′ Σs(~r, E → E ′, Ω̂ · Ω̂′)ψ†(~r, Ω̂′, E ′)

+ q†(~r, Ω̂, E) (1b)

The key to using the adjoint flux for VR is defining the adjoint source [1]. Physically, ψ represents how
the source particles go forward and affect the rest of the problem space while ψ† represents how the
particles from a source come into the solution space and affect the response. In this way, the angular
adjoint flux represents how every part of phase space will influence the response we are seeking. For a
simple source-detector problem, for example, where the desired response is some reaction rate in the
detector, the adjoint source is defined as the detector response function, or q† = Σd.

CADIS-Ω uses the contributon flux, defined in Eq. (2), where contributons are pseudo-particles that
carry “response” from the radiation source to a detector [5–7].

Ψ(~r, Ω̂, E) = ψ†(~r, Ω̂, E)ψ(~r, Ω̂, E) (2)

The contributon flux includes both forward and adjoint information, expressing the importance of a
particle that is born at a forward source and moves through space towards an adjoint source, contribut-
ing to the solution. An importance map generated by a contributon flux will assign high importance
to particles that are generated at the forward source and likely to generate a response in the detector.
Becker’s thesis [8] aptly points out that this understanding of contributons is illustrated by a source-
detector problem, where the forward source has little importance to the adjoint source, but does have
importance to the problem solution. In comparison, the adjoint flux places high importance on particles
that are close to the adjoint source without accounting for the impact of forward transport.

3. PAST WORK

The generation of effective importance maps for automated VR techniques remains an active area of
research. A wide variety of approaches have been investigated which utilize aspects of either adjoint
theory or contributon theory to gain insight into importance function parameters for deep-penetration
radiation shielding problems. Some techniques utilize an initial MC estimate of importance, and others
utilize a determinstic calculation. In this section, we will briefly describe some of the methods utilized



to generate biasing parameters for VR techniques, and consider the strengths and weaknesses of each
method.

As mentioned in Section 2, the likelihood of particles in a cell contributing to a tally can be calculated
in a variety of manners. Booth [2] showed that the importance of a cell could be estimated with MC
by calculating the total score of particles entering the cell and dividing it by the total weight of the
cell. Concurrently, Hendricks [9] developed an automated weight window generator for MCNP [10].
The weight window generator automated VR by calculating the total weight entering and exiting the
weight window target region, which allowed the generator to iteratively converge upon weight window
target values. Several other methods exist to iteratively calculate weight window parameters with MC
calculations, but in general, target weights in weight window maps are the inverse of the importance
values for a given point in phase space.

Perhaps the most widespread and accessible of methods that utilize a deterministic transport calcula-
tion to generate an importance map are the CADIS [11–13] and the FW-CADIS [1, 14, 15] methods.
These methods optimize MC transport for localized and global response functions by using consis-
tently biased source particles and particle weights. This biasing is done using a determinstic solution
for the adjoint scalar flux, φ†, as a measure of the importance. Equations (3) and (4) describe the bi-
asing parameters generated by CADIS and FW-CADIS, respectively. The biasing parameters used by
CADIS are generated from the solution of the adjoint transport equation, where φ† is obtained from a
calculation where q† is set to the response function:

q̂ =
φ†(~r, E)q(~r, E)∫∫
φ†(~r, E)q(~r, E)dEd~r

=
φ†(~r, E)q(~r, E)

R
, (3a)

w0 =
q

q̂
=

R

φ†(~r, E)
, (3b)

ŵ =
R

φ†(~r, E)
, (3c)

where q̂ is the biased source distribution,w0 is the starting weight of the particles, ŵ is the target weight
of the particles, and R is the response of interest.

While CADIS is quite effective at reducing the variance in localized responses, FW-CADIS was devel-
oped to reduce the variance in global responses. The concept behind FW-CADIS is that if the calculated
response can be quantified with an even number of particles sampled in each phase-space region, then
the uncertainty distribution will be even across the global response tally. Rather than setting q† = Σd as
CADIS does for source-detector problems, FW-CADIS generates a q† based on a deterministic forward
calculation (Eqs. (4a)-(4c)). This q† is used to solve the adjoint equation, and then source biasing and
particle weights are adjusted with the same methods described in Eqs. (3a)-(3c).



The biasing parameters that are used by FW-CADIS depend on the desired optimized results. To
calculate the energy and spatially dependent flux, φ(~r, E), FW-CADIS sets

q† =
1

φ(~r, E)
, (4a)

to calculate spatially dependent flux,
∫
φ(~r, E)dE ,

q† =
1∫

φ(~r, E)dE
, (4b)

and to calculate spatially dependent dose in the system,
∫
φ(~r, E)σd(~r, E)dE :

q† =
σd(~r, E)∫

φ(~r, E)σd(~r, E)dE
. (4c)

For problems with strong anisotropies in the particle flux, the importance map and biased source de-
veloped using the space/energy treatment above may not represent the real importance well enough to
sufficiently accelerate the MC calculation. Note that because the scalar adjoint flux is used in Eqs. (3)
and (4), the angular dependence of the importance function is not retained. The drawback of using
scalar flux quantities to calculate these parameters is that no information is retained on how particles
move towards the response function. However, if the angular dependence of the importance function
were retained, the map would be very large (tens or hundreds of GB) and more costly to use in the MC
simulation. It is worth noting that the automatic weight window generator in MCNP does have the ca-
pability of angular biasing. For some problems, this generator works well, but it requires iteration and
inherently depends on a MC solution for weighting parameters, which is limited by statistical precision
and may take time to acquire a weight window with an acceptable precision.

A variety of methods have incorporated angular information, to some degree, into deterministically-
informed MC VR. Of note are the AVATAR [16] and Local Importance Function Transform (LIFT)
[17] methods. The LIFT method uses an approximation of the adjoint flux that is piecewise continuous
in angle. However, LIFT only captures linearly anisotropic scattering [18], which is not suitable for all
types of strongly anisotropic systems. The AVATAR method, which is an implementation of the maxi-
mum entropy distribution, assumes that the flux is separable and symmetric about the average current.
While AVATAR does generate biased weight windows, they are not consistently biased with the source
distribution (while those in CADIS and FW-CADIS are). Neither LIFT nor AVATAR perform well in
voids and low-density regions [18].

More recently, Peplow et al. [19], built off of AVATAR by consistently biasing the source distribution.
In this work, Peplow et al. created an angular version of CADIS both with limited directional source
biasing and without directional source biasing. These methods performed well compared to the analog,
but were not sufficiently accurate in capturing angular information to scale to complex problems with
strong anisotropies.



In summary, substantive work has been performed to generate VR parameters for deep penetration
shielding problems with MC. These methods generate biasing functions or weight window maps from
calculated importance functions. Some methods iteratively converge on cell importances with MC,
which work well if the problem is sampled with sufficient precision. Other methods utilize determin-
istic calculations to generate VR parameters. In this realm, both CADIS and FW-CADIS perform well
for deep-penetration and relatively isotropic problems. However, CADIS and FW-CADIS struggle in
problems where there are strong anisotropies in the flux. Work has been performed to generate VR
parameters with angular information, but these methods are either not automated, have limited acces-
sibility, have limited applications, or struggle to capture the anisotropy for a large problem subset.

4. METHODOLOGY

We have seen that past methods are challenged by problems with strong angular anisotropies or have
limited use cases. We build on past methods but calcualte the adjoint scalar flux in a way that has not
been done before. Using more angular information should improve performance and increase reliability
for problems in which angular information is particularly important. In this section we describe the
theory behind the new method and why we believe it will work for highly anisotropic problems. We
also present an overview of the software implementation.

4.1. Theory

Our new automated hybrid method incorporates angular information into the biasing parameters for
FW/CADIS while not explicitly biasing in angle. That is, we generate space- and energy-dependent
importance maps that incorporate the flux anisotropy in a more effective way than current implemen-
tations without adding the complication of angular weight windows. Both CADIS and FW-CADIS use
an adjoint scalar flux to generate biasing parameters for VR as shown in Eqs. (3) and (4). FW/CADIS-Ω
uses the same equations for weight windows and source biasing, but our method generates the adjoint
flux differently. We first take the product of the adjoint angular flux with the forward angular flux (this
quantity is the contributon flux), integrate over angle, and divide by the integrated forward angular flux
as shown in Eq. (5). This quantity, which we designate φ†

Ω, is then used in the FW/CADIS methods.

φ†
Ω(~r, E) =

∫
4π
ψ(~r, E, Ω̂)ψ†(~r, E, Ω̂)dΩ̂∫

4π
ψ(~r, E, Ω̂)dΩ̂

(5)

In a strongly anisotropic system, the adjoint scalar flux generated by Eq. (5) will be informed by what
directions were most prominent in the forward case. We can see this by considering the contributon
flux, the numerator of Eq. (5). The contributon flux expresses preferential transport paths for particles
that are born at the forward source and generate a response. Therefore, the particles in φ†

Ω include
the impact from how the direction they are moving influences the answer. This should allow for more



effective MC transport when angular effects are important. Note that in an isotropic system, φ†
Ω will

be essentially the same as φ†.

4.2. Implementation

We implemented the new method through the AutomateD VAriaNce reducTion Generator
(ADVANTG) [20, 21] software developed at Oak Ridge National Laboratory (ORNL). ADVANTG
automates the generation of the importance map and biased source distribution created using either the
CADIS or FW-CADIS methods for use in MCNP5 [10]. An input file in MCNP syntax is provided by
the user in addition to some instructions for running ADVANTG. ADVANTG uses this information to
exectue the discrete ordinates solver Denovo [22] and uses the output to create the VR parameters for
MCNP. The main reason we chose this system is the implementation is nearly invisible to the user and
therefore the experience of using this method is nearly identical to using CADIS or FW-CADIS. This
facilitates easy adoption of software that is already easy to use.

The major modifications required to implement this method were made to Denovo. The angular flux is
typically not stored or written by deterministic solvers as the desired output is often the scalar flux. The
new method, however, requires both the forward and adjoint angular fluxes to create the scalar flux.
Denovo was therefore modified to store and write the angular flux. A new function was also added that
performs the integration in Eq. (5). This set of augmented scalar fluxes is then written the same way
as any scalar flux output from Denovo.

The benefit of the bulk of the implementation being in Denovo is several fold. From the standpoint of
ADVANTG, there are very few differences between the new method and FW/CADIS, making imple-
mentation straightforward. Further, anyone who finds a use for a scalar flux created as in Eq. (5) will
now be able access it. Finally, it might be useful to have access to the full angular flux. Examining
the angular flux for a problem could have research or pedagogical implications, and a VR method that
uses the angular flux explicitly could be more easily developed in the future.

5. RESULTS AND DISCUSSION

To begin to characterize the performance of CADIS-Ω we chose to study a Labyrinth source-detector
problem. Such labyrinth problems contain some angle dependence that is not well captured by stan-
dard CADIS [19]. The motivation for this initial test is to investigate the differences between CADIS
and CADIS-Ω. We also performed an analog calculation, comparing the tally result, the relative un-
certainty, and the MC figure of merit (FOM) of the response tally of the methods. The FOM is given
below, where we used the average relative error of the tally total.

FOM =
1

(calculation time) ∗ (average relative error)2
.



Figure 1. Forward deterministic flux generated by Denovo for Labyrinth problem.

All MCNP calculations used 10,000,000 particles, an f4 tally for the total reaction rate in the NaI
detector (using a path length estimator), and energy bins matching the bounds of the library used by
Denovo. Denovo used the 27g19n shielding cross section library (a library included in the ADVANTG
software distribution), a step characteristic (SC) spatial solver, quadruple range (QR) quadrature with
four azimuthal and four polar angles per octant, a PN order of 3, and 135,000 spatial voxels.

Figure 1 shows the problem geometry overlaid on a forward deterministic flux map. The labyrinth is
comprised of a concrete shield, a 10 MeV isotropic point source at (-75, 0, 50), and a 10x10x10 cm
cubic NaI detector on the other side of the shield centered at (75, -15, 50). The edges of the problem
have reflective boundary conditions, and the cross section libraries for MCNP were continuous energy.

The deterministic portion of the CADIS method took 41.5 minutes and CADIS-Ω took 83.0 minutes,
both on a single core of a 3 GHz Intel Core i7 processor. The MC runtimes for the analog, CADIS,
and CADIS-Ω were 64, 483.4, and 408.9 minutes, respectively, on a single, 20-core node of Intel Xeon
E5-2670, resulting in FOMs of 493, 5.1, and 145.0, respectively. These results are summarized in
Table I. In observing the adjusted FOM values, one should note that the system that performed the
deterministic calculations was different than that of the MC calculations.

The tally responses and relative uncertainties for the NaI detector in the Labyrinth problem are shown
in Fig. 2 for the analog, CADIS, and CADIS-Ω methods. CADIS-Ω has a lower relative error than
CADIS for lower energy bins, but a slightly higher relative error for higher energy bins. The relative
error for CADIS-Ω appears to be uniformly low. Comparatively, CADIS has the highest relative errors
of all three methods at low neutron energies, but the lowest relative error for the highest energies. Not



Figure 2. Responses (left) and relative uncertainties (right) in NaI detector tally for the Labyrinth
problem.

unsurprisingly, the analog response had the highest uncertainty in the energy bins with the lowest re-
sponse. Adding error bars on the response plot of Figure 2 obscured the data. In general, the responses
are equivalent to within one standard deviation. This is not the case at low energies, where none of the
methods lie within one standard deviation of each other, and CADIS lies well outside of the bounds of
both the analog and CADIS-Ω methods. To facilitate comparison, the relative difference between the
CADIS and CADIS-Ω responses and the analog response is shown in Fig. 3.

By separating the detector response into the scalar flux and the response function (ΣT ), shown in Fig. 4,
we gain some insight as to why the results in the low energy region are in disagreement. The issues
that lead to both CADIS and CADIS-Ω’s disagreement with the analog calculation at low energies may
be that the behavior of the intermediate energy range neutrons is not being effectively captured in the
VR because there are so few of them and they do not dramatically impact the detector response. The
source of this discrepancy merits further investigation.

To investigate the reason that CADIS-Ω has higher relative error in some energies, we compared the
adjoint flux distributions generated by CADIS and CADIS-Ω in a lower energy group, group 26 (1E-
11 to 1E-08 MeV), seen in Fig. 5, and a higher energy group, group 11 (2.9E-05 to 1.01E-04 MeV),
seen in Fig. 6. Note that in these figures the color scales are not the same between groups so that
the relative behavior of the flux within a method can be compared between the methods. It is the
absolute difference between the flux values that will influence the weight window bounds, so this type
of approach is reasonable.

In group 26, CADIS-Ω creates an adjoint flux in which the majority of the group 26 neutrons that con-
tribute to the detector response are those that exit the channel in the small angle between the shield and
the detector, while the standard adjoint indicates fairly symmetric contribution. This illustrates that
CADIS-Ω captures angular information differently than CADIS. We expect the shape of the CADIS



Figure 3. Relative differences between the CADIS and CADIS-Ω responses and the analog response.
For scale, the analog relative error is also included.

Figure 4. Neutron flux at the NaI detector (left) and the sampled response function (right) that are
folded together to obtain detector response.



Figure 5. Group 26 adjoint flux generated by standard Denovo (top) and the CADIS-Ω method (bot-
tom).



Figure 6. Group 11 adjoint flux generated by standard Denovo (top) and the CADIS-Ω method (bot-
tom).



Table I. FOMs and Timings for Labyrinth Problem
FOMMC FOMadjusted TMC (minutes) Tdeterminstic (minutes)

Analog 493 493 64.9 0.00
CADIS 5.1 — 483.4 41.5
CADIS-Ω 145.0 —– 408.9 83.0

map given the non-inclusion of angular information. The CADIS-Ω map seems to be strongly domi-
nated by the streaming behavior of the particles between the shield and the detector in the right half of
the problem, indicating a locally anisotropic behavior in this region. This is likely due to the lack of
scattering reactions off of air for neutrons in this region. As particles travel beyond the detector, their
probability for inducing a response decreases as their probability for exiting the problem increases. The
decrease in particle importance near the problem boundaries is consistent with what has been observed
for the contributon flux. Further, the importance of low energy neutrons contributing to the detector
response drops off sharply shortly into the shield. This is likely due to the high probability of absorp-
tion of low energy neutrons into the shield. That is, low energy neutrons that are in the shield have a
much lower survival probability than higher energy neutrons, like those in group 11. As a result, the
majority of the group 26 neutrons that stream directly towards the detector once exiting the channel
will contribute to the response, resulting in a locally anisotropic response-generating flux.

This asymmetric effect in the CADIS-Ω case exists, but is not as prominent in group 11. Unlike group
26, the group 11 neutrons are far more likely to survive an interaction with the shield. As a result, the
response-generating flux of group 11 has a similar probability to be either from streaming out of the
channel or from exiting the shield, resulting in a more locally-isotropic flux near the detector volume.
As a result, a much greater portion of the shield contains particles of high importance to the detector
response. Therefore, the group 11 CADIS-Ω adjoint flux is less dominated by the streaming behavior
of particles exiting the channel.

As mentioned previously, Table I reports FOMs using the Monte Carlo simulation time alone (des-
ignated MC), as well as an adjusted FOM that incorporates the runtimes for deterministic transport
(designated adjusted). For a simple problem with the refined angular and spatial discretizations we
chose, the deterministic calculation times were comparatively significant. Because CADIS-Ω uses two
deterministic transport calculations while CADIS uses one, incorporating the increased time for the
calculation is necessary for a fair comparison. It is worth noting that FW-CADIS-Ω and FW-CADIS
would no longer have this discrepancy in deterministic calculation time.

The FOMs reported in Table I reveal the significant effect that the high relative errors on low energy bin
responses had on the FOM for CADIS. Because the low energy bins had a high response cross section
in addition to a high flux, these bins strongly affected the FOM for CADIS. The large difference in
flux anisotropy near the detector in Fig. 5 may also explain this. The biasing parameters generated by
CADIS are encouraging the MC calculation to spend equal calculation power splitting and rouletting
for all directions entering the detector even though the flux is most likely to reflect off of the wall to
generate a response. As a result, CADIS spends more time tracking in regions that do not contribute



to the solution. Conversely, CADIS-Ω does capture this behavior, suggesting it will perform well for
problems with strong, local angular anisotropy.

It is noteworthy that, for this problem, analog MC produced a higher FOM than either VR method. It
may be that this problem was not sufficiently challenging to see the benefit of VR compared to analog.
It is, however, important to mention that even though the FOM for analog is highest, the results have
unacceptably high relative error in a fair amount of the energy spectrum. It may be that we would rather
have the uniformly low response from CADIS-Ω at a slightly higher time cost. Running more analog
particles to see how long it takes to reduce the relative error to acceptable levels everywhere will be an
informative task.

Another important concept that will affect the success of both CADIS and CADIS-Ω are ray effects,
which are manifestations of rays in the flux that result from discretizing the transport calculation in
angle. Both Figs. 5 and 6 exhibit some ray effects behind the shield. Comparing the flux maps between
CADIS and CADIS-Ω, CADIS-Ω does not seem to suffer any more from ray effects than traditional
CADIS and even appears to reduce them in some locations. This softening of the rays may be caused
by the integration performed in the numerator of Eq. (5). In this problem, the streaming path out of the
labyrinth is perpendicular to the rays generated by the adjoint source, resulting in a softened adjoint-Ω
flux map. However, a future problem where the ray effects in both the forward and adjoint sources
lie parallel to one another might result in synergistic ray effects, which would have adverse effects on
the VR effectiveness of the Ω-methods. The extent to which CADIS-Ω can reduce ray effects is an
important attribute to study in future tests.

Overall, the performance of CADIS-Ω compared to CADIS and analog MC is promising. In our simple
demonstration test problem, CADIS-Ω performed significantly better than CADIS by both FOM and
relative error distribution inspection. CADIS-Ω had a more uniform uncertainty distribution in the
response tally than both CADIS and the analog calculation. To determine the cause of these results,
we compared the adjoint flux quantities calculated by CADIS and CADIS-Ω. Inspection of the flux
maps revealed that CADIS-Ω captures anisotropies in the flux, and these anisotropies are reflected
in the VR parameters that are generated. Based on both theory and the method’s performance in
this demonstration problem, we expect that this method will perform well in problems with strong
flux anisotropy generated by streaming paths or material heterogeneity, while performing poorly in
problems with significant scattering effects where the flux may become more locally isotropic.

6. FUTURE WORK

Section 5 showed that CADIS-Ω can outperform CADIS in a problem with a strong degree of angular
anisotropy in the flux. However, there are a number of physical means by which angular anisotropy in
the flux might occur. To further characterize the performance of CADIS-Ω and FW-CADIS-Ω more
fully, we are planning to use a suite of test problems that cover a wide range of physical characteristics.
The testing scheme identified in Table II summarizes our testing plans. As noted in Section 5, problems



Table II. Proposed Test Problem Coverage
Problem Name Problem Coverage

Streaming Paths High Scatter Highly Heterog. Beam Problem
Streaming Channel X X
Metal Plate X X X
Labyrinth Variants X X X
Spherical Boat X X X
Kobayashi Benchmark X X

where the direction of particles is important to the result are where we anticipate the strength to lie in
CADIS-Ω. Our test problems aim to address all of the physical means by which the flux could become
strongly anisotropic, and some have shown to be difficult for traditional FW/CADIS [19]. FW/CADIS-
Ω’s sensitivity to various determinstic discretization parameters will also be investigated.

After FW/CADIS-Ω has been fully characterized, it will be tested with large problems of interest.
Specifically, we are interested in real problems that contain strong angular anisotropies and that are
difficult to solve, such as active interrogation problems, used fuel cask storage (through air vents and
between casks on ISFISIs), and facility calculations containing long gaps or streaming materials em-
bedded in moderators. These large problem studies will be informed by the small problem studies and
demonstrate the potential impact of this new method.

7. CONCLUSION

The existing fleet of fully automated hybrid methods does not include a method that has the ability
to effectively capture angular anisotropies in the flux for effective VR in deep-penetration radiation
shielding problems. For problems that are strongly anisotropic, existing automated hybrid methods
have poor performance, and do not produce results with the quality necessary to be used on a large scale.
There has been a strong push to remedy this in the hybrid methods community, but the methods that
incorporate angular information for variance reduction are either not automated, not widely accessible,
or are limited to particular anisotropic problem types because of assumptions in their methodology.

We have presented a new method, FW/CADIS-Ω, that includes information from the full energy- space-
and angle-dependent angular fluxes from a deterministic calculation to generate a weighted form of the
adjoint scalar flux. This weighted form of the adjoint flux is calculated by postprocessing the adjoint
angular flux values from the discrete ordinates solver Denovo. This scalar flux value, φ†

Ω, is then
passed to ADVANTG to use in CADIS and FW-CADIS. By using this scalar flux quantity, the weight
windows generated by FW/CADIS-Ω will incorporate angular information without explicitly using
angular biasing techniques. This method is based upon a strong theoretical foundation; it incorporates
concepts from both adjoint and contributon theory. Because it has been implemented in production-
level software, it will be easy to use and adopt.



We have explored the success of CADIS-Ω in a simple Labyrinth test problem and found promising
results. Compared to CADIS, CADIS-Ω had a significantly higher FOM, a more uniform uncertainty
distribution, and agreed well with analog results. In comparing φ† and φ†

Ω in two energy groups, we
found that CADIS-Ω generated dramatically different adjoint scalar flux values in regions with strong
local anisotropy. This initial test showed that the φ†

Ω captures local anisotropies in the flux, which is
reflected in the variance reduction parameters generated by CADIS-Ω. We view these initial results
as a good indication that FW/CADIS-Ω will be an effective automated variance reduction tool for
problems with strong angular anisotropies and that it may significantly improve our ability to solve
difficult real-world shielding problems with these characteristics.
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