
60

Chapter 4

Characterization Problems and
Results

The ⌦-methods have been presented in the previous chapters. In this chapter, the CADIS-
⌦-method is applied to a number of small, anisotropy-inducing problems. Recall that the
⌦-methods are a version of CADIS and FW-CADIS that use an adjusted contributon-based
flux rather than a pure-adjoint flux to generate biasing parameters. The CADIS-⌦-method’s
performance is compared to CADIS and standard nonbiased Monte Carlo. Because the ⌦-
methods have been designed to generate variance reduction parameters in problems where
there is a strong degree of anisotropy in the flux, their characterization is dependent on
testing them in anisotropic problems. This chapter begins with a presentation of the char-
acterization problems that have been designed to induce anisotropy in the particle flux by
di↵erent physical mechanisms. The results of the ⌦-methods when applied to these problems
follows. Two problems that highlight interesting aspects of the ⌦-methods are subsequently
used in a deeper parametric study to determine the ⌦-method’s sensitivity to di↵erent an-
gular flux information. Using the results obtained from this study, recommendations on
favorable parameters with which to run the ⌦-methods are made.

4.1 Description of the Characterization Problems

In characterizing the ⌦-methods, we aim to determine in which problems they perform well,
and then quantify that success. First, we must determine how e↵ective the ⌦-methods are
in reducing the variance for a tally result in Monte Carlo. This is done by assessing and
comparing the FOMs between di↵erent VR methods. Also, the method must be investigated
using a diverse set of anisotropic problems. By constructing problems that have di↵erent
mechanisms causing or inducing anisotropy in the flux, potential strengths or weaknesses of
the method can be isolated as a function of these mechanisms. In addition to comparing
the FOMs or REs between methods, another desirable metric by which to measure the
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method’s success given the degree of anisotropy in the problem. Recall that di↵erent means
of quantifying the flux anisotropy are described in Section 3.2.1. With a diverse selection
of characterization problems, we obtain variation in the flux anisotropy in each problem as
well as the resultant FOMs. This provides us with a path forward with which to use the
⌦-methods in a deeper angular-sensitivity study.

4.1.1 Identification of Anisotropy-Inducing Physics

There exists a rich history of using hybrid methods in problems with strong angular de-
pendence, as summarized in Chapter 2. Angular dependence may appear in a problem
through several means–both physical and computational. Mosher et al. [61] noted in their
threat-detection work with ADVANTG that problems with strongly directional sources and
problems with “thin” materials like air were di�cult for ADVANTG to e↵ectively reduce the
variance. They attributed this to strongly anisotropic behavior of the importance function
that were not reflected well by the scalar flux. Sweezy [65] also found that weight windows
obtained from a hybrid SN calculation were not good for a dogleg void problem, where ray
e↵ects from the SN calculation generated poorer weight windows than a method without
ray e↵ects 1. Though they did not observe ray e↵ects in the importance map for the prob-
lem, Peplow et al. [52] also found that CADIS struggled with thin material streaming in a
spherical boat test problem.

The examples of angle-dependence in problems a↵ecting hybrid methods’ success illus-
trate that the flux can have anisotropy resulting from more than one mechanism. Based on
these examples, we have identified several separate processes that a↵ect the flux anisotropy.
These processes can be grouped into three categories:

• anisotropy in the flux resulting from strongly directional sources,

• anisotropy resulting from strong di↵erences between material properties (this can be
due to di↵erences in materials spatially or due to changes in interaction probabilities
as a function of energy),

• anisotropy in the flux from algorithmic limitations (ray e↵ects).

These processes overlap. Consequently, this section continues with a brief discussion about
how each mechanism applies to anisotropic problems.

A strongly directional source is one that emits particles in a very small solid angle of
angle-space. The most extreme example of this would be a monodirectional source, while an
extreme opposite would be an isotropic source. This particular anisotropy-creating process
is source-specific and does not depend on the rest of the problem configuration. Our char-
acterization problems will have sources of both types to ensure the full parameter space is
covered.

1Recall from Sections 2.2.3 and 2.6 that ray e↵ects are a nonphysical e↵ect seen in the flux solution that
arise from the angular discretization of the problem. Ray e↵ects are common in situations where there are
strong streaming e↵ects or if a strong source is emitting particles with long mean free paths in the material.
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The next subset of anisotropy-inducing processes are those that result form strong di↵er-
ences between material properties. As noted, this can be from the geometric configuration
of the problem, or from variations in the cross sections within a geometric location. To
illustrate the di↵erences in the way the problem can physically induce anisotropy in the flux,
several simple thought experiments will be presented.

Consider first the extreme example of material A which has some low absorption proba-
bility, and material B which is a pure absorber. Only particles that travel through material
A will eventually reach the tally location. This is an example of a type of problem with
strong material heterogeneity. In constructing a set of characterization problems, creating
channels through which particles will preferentially travel will induce anisotropy in the flux.
These types of flow paths are also of interest in shielding application problems, and were
discussed at length in Section 2.2.3. In this type of problem, material A can either have
a low scattering probability (airlike), or it can be highly scattering. In scattering events,
neutral particles can either lose very little energy with a high Z material, like lead, or they
can lose a lot of energy with a low Z material. These are considered separately, because the
energy spectrum of the particles a↵ects the particle’s interaction probability.

Consider another example of an isotropic point source immersed in a pure thin material.
Because particles have a very low probability of interaction in the material, they will travel
almost uniformly outwards away from the point source. At some distance from the point
source, the majority of the particles in a cell will be traveling in the same direction. This
is an example of a problem with streaming paths. To summarize, we have identified several
sub-distinctions of this type of e↵ect: regions with streaming where particles far from the
source are primarily monodirectional, regions that are highly scattering where particles have
a preferential flowpath through one material and are downscattered in energy, and regions
with strong material heterogeneity where particles have preferential flowpaths but are not
necessarily downscattered in energy. It should be noted that while streaming and scattering
problems will almost always be subsets of problems with material homogeneity, it is possible
to have a highly scattering or a streaming problem without material heterogeneity.

The last factor that can influence anisotropy in the flux solution is ray e↵ects. While
ray e↵ects are a result of anisotropy in the flux solution, this is a nonphysical e↵ect and
can actually a↵ect variance reduction performance. In the case of ray e↵ects, we aim to see
if the ⌦-methods are more robust in avoiding them in generating VR parameters. Because
ray e↵ects are primarily seen in large regions with low interaction probabilities, some of the
characterization problems must incorporate these types of regions into their geometries.

In this subsection, four primary physical mechanisms by which the flux may be anisotropic
were identified. These are: streaming paths, problems with high scattering e↵ects, prob-
lems with high material heterogeneity (specifically with materials with strong di↵erences in
scattering and absorption probabilities), and problems with monodirectional sources. As
described in the preceding paragraphs, a few of these mechanisms may overlap with one
another. Together, they compose an assortment of anisotropy-inducing physics. Combined
with di↵erent geometric arrangements a diverse group of anisotropic problems can be for-
mulated.
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4.1.2 Problem Specifications

With the anisotropy-inducing physics described in Section 4.1.1, a set of characterization
problems that have di↵erent combinations of each of these e↵ects can be conceptualized.
These problems provide an overview of how the ⌦-methods perform in an assortment of
anisotropic problems. As previously described, these fall into two broad categories: anisotropy
caused by the problem materials and geometry, and anisotropy caused by the source defini-
tion. In the next several paragraphs, the material and geometric configuration of each prob-
lem will be described. This will be supplemented with an explanation of which anisotropy-
inducing physics are contained in each problem. A summary of which physics are in each
problem is provided in Table 4.1.

Labyrinths

The labyrinth problems have isotropic point sources on the left hand side of the problem
emitting a Watt spectrum of neutrons approximating the energy spectrum emitted by that
of 235U fission. On the right hand side of the problem there is a NaI detector recording the
flux. They are composed of a concrete maze with an air channel through the maze, and then
open air channels at either end of the channels. The first variant of the labyrinth has a single
turn, as illustrated in Figure 4.1, and the second labyrinth has multiple turns, as illustrated
in Figure 4.2. These problems are both likely to have ray e↵ects in the air region near the
forward source. However, because far more scattering events will be required for a particle
to exit the channel in the multi-turn maze, ray e↵ects will likely be less prominent in the air
region near the detector of that variant problem than in the single turn maze. Both problems
have strong di↵erences in interaction probabilities between the air and the concrete, thus
they will have material heterogeneity. Further, because the concrete is composed of several
lighter-mass elements, these will also be highly scattering.

Steel beam in Concrete

Figure 4.3 is a variant problem with a steel beam embedded in concrete. A NaI detector is
located on the right hand side of the problem to record the response in CADIS problems. The
source is a 80x80 centimeter sheet pointed in towards the steel structure in the +x direction
emitting 10 MeV neutrons. Because the particles have preferential flow through the steel
but do do not have long streaming paths, this problem has material heterogeneity and will
be highly scattering, but will not have streaming paths in the shielding region. Further,
because the source is emitted from a thin plate in +x, it is monodirectional. This problem
may have some ray e↵ects occurring from backscattering o↵ of the steel and concrete in the
left side air region. It may also have ray e↵ects exiting the beam on the right hand side.
However, because significantly more scattering will happen in the concrete, the ray e↵ects
on the right hand side will be less pronounced than in the air exits of the labyrinths.
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Figure 4.1: Single turn labyrinth geometry.

Figure 4.2: Multi-turn labyrinth geometry.

U-shaped corridor

The U-shaped corridor illustrated in Figure 4.4 is somewhat similar to the maze variants
from Figs. 4.1 and 4.2. On the left-hand side of the corridor there is a point source emitting
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Figure 4.3: Steel plate embedded in concrete.

Figure 4.4: U-shaped corridor in concrete.

a Watt spectrum of 235U neutrons. The right leg of the corridor has a NaI detector. Without
the large air voids in the labyrinth variants, the U-shaped corridor will have less prominent
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ray e↵ects. The heterogeneity between the air and concrete will preferentially transport
particles through the air, and particles interacting with the concrete will downscatter in
energy.

Concrete shielding with rebar

(a) Slice at y = 100 centimeters

The shielding material illustrated in Figure 4.5 is built o↵ of the steel structural beam
problem in Figure 4.3. However, this is a more realistic illustration of rebar in concrete.
In this problem, a NaI detector is used to measure the response on the right hand side of
the problem in yellow. The source is both space- and energy-dependent, emitting a Watt
spectrum of neutrons characteristic of 235U fission, and is distributed in a 100x160 centimeter
plate on the left hand side of the problem. The source is monodirectional in +x. The two
images provided show di↵erent xy-plane cutaways of the shielding, with steel rebar running
through the concrete in di↵erent directions. This problem will have angular dependence, but
preferential flowpaths through the concrete are not directed towards the detector location on
the other side of the shielding in some of the rebar. This problem has material heterogeneity
both in the concrete and between the concrete and air. This problem is highly scattering
from the concrete, and is unlikely to have ray e↵ects without a strong single preferential
flowpath through the shield.
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(b) Slice at z = 105 centimeters

Figure 4.5: Concrete shielding with rebar.

Nuclear medicine therapy room

A small application problem relevant to the interests of this project is the therapy room
illustrated in Figure 4.6. This room has concrete walls, a water-based phantom that is
being irradiated by a monodirectional source in the room, and a hallway where a therapy
technician might walk. In a CADIS run of this problem, we seek to calculate the response in
the technician in the hallway from particles that are not absorbed by the patient in the room.
Because this problem is primarily air with concrete borders, it will have strong streaming
e↵ects in the air. Particles that do make it to the technician will be produced by emission
from the patient in the room, by scattering o↵ air or by scattering o↵ walls. Because of the
high fraction of air in this problem, we also anticipate ray e↵ects to occur. While there will
be scattering in this problem, it will not be as strong of an e↵ect as other characterization
problems.

Now that the broad subset of characterization problems have been described, the physics
that each contains is summarized in Table 4.1. The table illustrates that it is di�cult to
separate one cause of flux anisotropy from another in a characterization problem. This is
especially true in generating a problem that has ray e↵ects without streaming paths, and in
constructing a highly scattering problem that has preferential flow paths but does not have
material heterogeneity. This is a deficiency of the characterization problem construction,
and is certainly an area that may be improved upon in future work.
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Figure 4.6: Therapy room geometry.

Problem Name
Problem Coverage

Streaming
Paths

Highly
Scattering

Material
Hetero-
geneity

Monodi-
rectional
Source

Ray
E↵ects

Single turn labyrinth x x x x
Multi-turn labyrinth x x x x
Steel plate x x x x†

U-shaped corridor x x x
Shielding with rebar x x x
Therapy Room x x x x

† May have ray e↵ects in low density region exiting the metal plate, but e↵ects will be less pronounced
than other problems.

Table 4.1: Anisotropy-inducing physics of each of the characterization problems. Each iden-
tified anisotropy-inducing physical metric is used in di↵erent combinations for the characteri-
zation problems. This will help to aid in extrapolating to which real problems the ⌦-methods
may be applied.
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4.1.3 Introduction to Data Visualization and Analysis

At this point several characterization problems have been identified for their properties in
inducing anisotropy in the particle flux. Prior to going through the results for each of the
characterization problems, this section shows how the data for each problem is presented and
walks through the reasoning behind this approach to the analysis. This starts with example
tables and figures of the FOM and tally results. Then, plots explaining the anisotropy
metrics follow. This is accompanied by a discussion about how the anisotropy metrics can
be related to the FOM and the relative error.

Figure of Merit and Timing Tables

In Section 3.2.2 several equation variants of the FOM were presented as quantifications
of method success. The FOMs for each characterization problem are presented in tabular
form, similar to Table 4.2. As discussed in that section, the FOM is dependent on the
relative error and the time to obtain that relative error. For the hybrid cases, six di↵erent
FOMs will be presented: three FOMs based on the tally average relative error, the tally
maximum relative error, and the tally minimum relative error, and two FOMs based on
the Monte Carlo runtime and the hybrid runtime. The unbiased analog Monte Carlo does
not have a deterministic runtime, so only the three FOM variants based on the relative
error are presented for those runs. When analyzing the results in the FOM table for each
characterization problem, consider that the tally average relative error is calculated from
all particles contributing to all tally bins in the problem. Thus the FOM reported for the
tally average relative error may be outside of the bounds of the tally minimum or the tally
maximum relative error. Table 4.2 summarizes which equations were used to calculate each
FOM; each equation number is noted in brackets.

CADIS or CADIS-⌦ analog
FOM Variant MC (3.15a) MChybrid (3.15b) MC

tally avg (3.12a) FOMavg,MC FOMavg,hybrid FOMavg,MC

max RE (3.12b) FOMmax,MC FOMmax,hybrid FOMmin,MC

min RE FOMmin,MC FOMmin,hybrid FOMmin,MC

time (mins) TMC Thybrid (3.13) TMC

Table 4.2: Table of FOM variants used to measure ⌦ performance. Relevant equations can
be found in Section 3.2.2 and are referenced in the table in parentheses.

Tables calculating the FOMs summarized in Table 4.2 may not have evaluated FOMS in
some locations. These will be noted with a dashed line, or “–”. These values will generally be
in the minimum relative error section of the FOM tables, and they represent a zero relative
error. This does not mean that infinite particles have been sampled (so the relative error
is infinitely small), but rather that no particles have been binned for that energy bin. This
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technically results in an infinite FOM, but in reality represents a bin that will never converge.
Because this value will hold no meaning in our quantification of the ⌦-methods’ success, the
infinite valued FOM is not included.

Table 4.3 reports the times used to calculate the FOM values in Table 4.2 more detail.
This table is split into three vertical regions: the MCNP time spent doing Monte Carlo trans-
port (TMC), the deterministic time spent in ADVANTG/Denovo (Tdet), and the walltime
(Thybrid), which is the summation of the two. The deterministic time section contains further
segmentations of timing. This is because processes in ADVANTG are run using di↵erent
computational resources. ADVANTG itself is a driver script that can launch a paralellized
run in Exnihilo/Denovo, but it also postprocesses the Denovo fluxes into source biasing and
weight window parameters. The processes exclusive to ADVANTG, like generating the bias-
ing parameters, are performed in serial on a single processor. Conversely, all of the Denovo
calculation is run in parallel on any number of cores specified by the user. To ensure that
a comparable time is used when calculating the adjusted FOM, we have chosen to calculate
the total walltime spent in each calculation. Thus, the parallelized clock time is multiplied
by the total number of cores to obtain Tdenovo. This quantity is summed with the runtimes
of the other serial tasks to obtain the total deterministic runtime.

CADIS CADIS-⌦ analog

time (minutes) time (minutes)
time

(minutes)

MCNP time total (TMC) TMC,cad TMC,cad�⌦ TMC,analog

deterministic
time

advantg time
(Tadv)

0.18 0.18 –

denovo time
(Tdenovo)

5.69 25.64 –

dispose time 0.00 0.16 –
omega time
(T⌦)

– 0.66 –

total (Tdet) Tadv+Tdenovo Tadv+Tdenovo+T⌦ –

wall time total (Thybrid)
TMC,cad +
Tdet,cad

TMC,cad�⌦ +
Tdet,cad�⌦

TMC,analog

Table 4.3: Table of di↵ering times used to measure ⌦ performance. These times are used to
calculate the FOMS in Table 4.2.

Two other times are listed under the deterministic time that may or may not be included
in Thybrid, which are T⌦ and Tdispose. Tdispose is the reported times that are not included in
the calculation of Tdet in either CADIS or CADIS-⌦. It is a sum of time results that either
are not important to comparing the methods–like calculating the anisotropy metrics–or times
that are accounted for by other tasks in Tdet. This prevents overlap of times and provides a
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more realistic comparison between the performance of both methods.
The reported ⌦ time, T⌦, is the total time spent in the tasks unique to the ⌦-methods.

This includes reading in the angular flux files, performing the computation of Eq. (3.1), and
writing the ⌦-results to a file. The ⌦ time, though run in Denovo, is still a serial calculation
so is separated out from the total Denovo time. The ⌦-method tasks at this time are not
parallelized, so the clock time is treated in the same way as the reported ADVANTG time.
Because the majority of the ⌦-flux generation infrastructure is implemented in Exnihilo
rather than ADVANTG, future expansions of the method could be parallelized for faster
clock times.

Because the adjusted FOM (the FOMs labeled FOMhybrid in Table 4.2) uses THybrid, which
is the total runtime of the Monte Carlo calculation (TMC) and the hybrid/deterministic run
preceding it (Tdet), it will di↵er between the ⌦-methods, standard CADIS, and standard
FW-CADIS. For CADIS, Tdet is the sum of the ADVANTG runtime and the wall time of
the Denovo transport. For CADIS-⌦, this is the sum of the ADVANTG runtime, the wall
time of the Denovo transport, and the time spent in the ⌦-flux calculation. How each time
is calculated is summarized in Table 4.3.

Beyond adding the ⌦-flux compute time, CADIS-⌦ will generally have much longer De-
novo runtimes than CADIS. This is a combination of the ⌦-methods’ requirement of both
a forward and adjoint calculation (recall that CADIS requires only the adjoint calculation),
and that the ⌦-methods require full angular flux solutions to calculate the ⌦-flux. While
standard CADIS has the ability to print the full angular flux solutions as CADIS-⌦, it is
neither a requirement nor is it standard practice. The I/O demands to both write the angu-
lar fluxes and then read them back in is a potential bottleneck in the method based on the
current implementation.

Tally Result and Relative Error Plots

Each of the problems introduced in Section 4.1.2 has a 10x10x10 cm detector in which
the tally response is calculated. The tallies are discretized in energy; the tally result and
associated relative error are tabulated for each energy bin. Some of this information can be
inferred from Table 4.2, but seeing the distribution of the relative errors for each energy bin
for each method is a useful way of seeing how e↵ective each method is at biasing particles all
of the tally bins, without time e↵ects. As described in the previous paragraph, CADIS-⌦’s
deterministic time will be longer than CADIS’, so the FOMhybrid may be lower for the ⌦-
methods, even if the relative errors are better. Presenting both the relative error distribution
and the FOM will provide a clear picture of the performance of the ⌦-methods.

The tally results and relative errors for CADIS, CADIS-⌦, and the nonbiased analog
Monte Carlo will be presented in figures similar to 4.7a and 4.7b. In the case where the
relative error of the nonbiased analog Monte Carlo far exceeds the errors achieved by CADIS
and CADIS-⌦, it will be omitted. The example given in Figure 4.7b shows a result where
this is the case. The hybrid methods will be marked with a dashed line; the nonbiased analog
Monte Carlo will be a solid line.
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(a) Comparison between methods of the tally result.

(b) Comparison between methods of the tally relative error.

Figure 4.7: Sample results for a characterization problem tally.
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Anisotropy Metrics

Equations (3.6) through (3.11) in Section 3.2.1 presented several di↵erent ways by which
the anisotropy of each problem could be quantified. As discussed in that section, Each
metric will show slightly di↵ering e↵ects. For example, the ratio of the ⌦- to adjoint-flux
in metric two will di↵er significantly from the angular contributon max to average of metric
three. The ⌦-flux may be larger or smaller than the adjoint scalar flux depending on the
directionality of the adjoint and forward particles relative to one another. If the particles
are travelling in opposite directions, this will result in a larger omega flux than the adjoint
flux. If they stream in the same direction (away from the tally detector, for example), then
the resultant ⌦ flux will be smaller than the adjoint. In the case of the angular contributon
max to average the distribution will have a lower limit where the maximum is very close to
the average contributon flux. It can never be lower than the average. In a isotropic problem,
the majority of the cells in the problem will be this ratio, whereas in a strongly anisotropic
problem this distribution will shift upwards, but will still have the same limiting lower value
as the isotropic case.

To illustrate the e↵ect of how di↵erent the anisotropy metrics’ distributions are, Figure
4.8 shows stripplots for all of the anisotropy metrics for three di↵erent energy groups in
one of the characterization problems. The e↵ects of thermalization–and consequently more
induced isotropy–on each of the metrics can be seen clearly as one scans from Fig 4.8a to
4.8c.

The adjoint anisotropy metric, the forward anisotropy metric, and metric three are all
shifted by a factor of 4⇡. Their natural lowest limit should be near unity but all lie lower.
This may be corrected in the future, but for the purposes of this analysis we are more
interested in the relative distribution and the consistent factor of 4⇡ is not important to that
e↵ect.

A stripplot shows distinct data points, but easily can be overwhelmed if the full number
of cells is used in a single strip. The figures in 4.8 contain a random selection of 1500 data
points from the full anisotropy datasets, which is only a small fraction of the number of
cells in the characterization problem meshes. There are other ways to visualize the full
distribution of the dataset. Figure 4.9 shows three modes by which an anisotropy metric can
be visualized. These plots, unlike Figure 4.8, show a single metric but all energy groups. The
highest/fastest energy group is plotted in deep red, and the lowest or most thermal energy
group is shown in blue.

All three subfigures in 4.9 show the e↵ects of thermalization on the chosen metric dis-
tribution and density. The stripplot of 4.9a is a clear representation of the density, but not
much more can be ascertained about the distribution of the metric. Figure 4.9b has box
and whisker plots that show the data quartiles, the mean, and outliers. However, in the
case where the distribution is heavily towards a limiting value, the mean is hard to separate
from the distribution. Further, no data on how the metric is distributed beyond the quartile
markers is provided. The violin plot of Figure 4.9c is a hybrid of the former two plots. The
width of the violin is related to the density of values, but inside the violin the limits of the
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(a) Example distribution of anisotropy metrics for fastest energy group.

(b) Example distribution of anisotropy metrics for epithermal energy group.

box plots are marked in black. The violin limits extend to the outliers.
The analysis for each of the characterization problems look at the result for the tally

average relative error, the tally maximum relative error, and the tally minumum relative
error. Because we are interested in how the relative error in each energy bin changes with
respect to CADIS-⌦ and CADIS, the plots showing the distributions over all energy groups
for a single metric is generally more applicable than the plots for a single energy group but
with all metrics. As a result, future plots of the metrics will be in the style of those in Figure
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(c) Example distribution of anisotropy metrics for thermal energy group.

Figure 4.8: Example distribution of all anisotropy metrics for highest, intermediate, and
lowest energy groups.

(a) Example distribution of M4, all energy groups, strip plot.

4.9 rather than 4.8.

Filtered Anisotropy Metrics

Beyond plotting the anisotropy metrics as a function of energy group, we are interested in
how the relative error or FOM will respond as a function of each metric. However, not all
cells in the problem are as important as others to contributing to the tally. A cell on the
problem boundary is very unlikely to contribute to the tally result when compared to a cell



CHAPTER 4. CHARACTERIZATION PROBLEMS AND RESULTS 76

(b) Example distribution of M4, all energy groups, box plot.

(c) Example distribution of M4, all energy groups, violin plot.

Figure 4.9: Di↵erent ways of visualizing M4 for a characterization problem.

(a) Example distribution of M2, all energy groups, violin plot
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(b) Example distribution of M2, all energy groups, violin plot using only datapoints above the
median metric value in each energy group.

(c) Example distribution of M2, all energy groups, violin plot using only datapoints above the mean
metric value in each energy group.

Figure 4.10: M2 violin plots using di↵erent selections of the metric data.

next to the adjoint source. As discussed in Section 2.2.3, the contributon flux measures the
response importance of a cell. By selectively choosing anisotropy metrics from cells that are
likely to induce a response, some of the noise of less important cells can be cut out.

To consistently cut out the same number of datapoints across all metrics, we have chosen
to use a filtering algorithm based on the contributon flux in each cell. The first filter is
choosing metric values from cells where the contributon flux is above the problem median
contributon flux. This median is evaluated separately for each energy group to ensure that
the same number of cells in each group is plotted. The second filter is choosing metric
values from cells where the contributon flux is above the problem mean contributon flux.
Again, the mean is computed separately for each energy group such that energy groups with
higher contributon fluxes do not cut out important flux values from a di↵erent energy group.
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However, unlike the median filter a di↵erent number of cells for each energy group will be
filtered. This is dependent on the skew between the contributon mean and median value for
each energy group. Because the filter is evaluated based on the contributon flux, it can be
applied to each metric consistently, meaning that the same number of cells are filtered out
between di↵erent metrics.

Figure 4.10 shows the e↵ects of cutting out data from unimportant cells on the M2

distribution. The first figure in the series, 4.10a, is the M2 full distribution. As discussed
previously, M2 will be above unity in cells where the foward and adjoint angular fluxes
travel in opposing directions, and will be below unity in cells where they travel in the same
direction. Very unimportant cells should be below unity. Applying the first filter–selecting
values above the contributon median–to this distribution results in Figure 4.10b. The bottom
tails of all of the distributions have been shortened, but still many unimportant cells remain.
This should be expected, as only half of cells have been removed. Applying the second filter
results in Figure 4.10c. The unimportant tails have been almost completely removed from
the M2 distributions. Further, features in the metric distribution once obviscated by the
tails are now visible.

Improvement Factor Correlations with Anisotropy

Now that a way of visualizing the metric distributions has been presented, we seek to find
how the metric distributions relate to the relative error or FOM for a given problem. First,
an improvement ratio for the relative error and FOM will be defined. For the relative error
it is

IRE =
RECADIS�⌦

RECADIS

����
E

g

, (4.1)

and for the FOM it is

IFOM =
FOMCADIS�⌦

FOMCADIS

����
E

g

. (4.2)

These will be henceforth be referred to as the relative error and FOM improvement factors.
With this definition of the improvement in the FOM or the relative error from CADIS to
CADIS-⌦, we now have a comparison between the updated and standard methods. By
relating this metric to the anisotropy metrics, we can see how anisotropy of the problem
influences the improvement in the relative error or the FOM.

There are several ways in which the improvement factor IRE or IFOM may be compared
against the anisotropy metrics. The first are against the metric mean and median values. A
plot of I versus either of these values should look very simiar, with some shifting depending
on the distribution. However, if the mean and median are shifted significantly, this would
indicate a skew of the distribution. This skew may also be correlated with either of the I
values. Last, it is possible that the spread of metric values may be correlated with the I
factor. Figure 4.11a is an illustration of how I can be plotted with each of these measurements
of the metric distribution.
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(a) M3 average, mean, skew, and variance plotted against the relative error improvement IRE

(b) M3 data selection above the metric median for each energy group, value average, mean, skew,
and variance plotted against the relative error improvement IRE

(c) M3 data selection above the mean for each energy group, value average, mean, skew, and
variance plotted against the relative error improvement IRE

Figure 4.11: Sample scatterplots of the M3 distribution against the relative error improve-
ment factor, IRE.

Similar to using the filtering algorithms in Figure 4.10, the data in the statistical trend
plots can also be filtered. The subfigures in 4.11 illustrate how filtering out the data by the
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contributon flux influences the location of IRE for each energy group. Figure 4.11b calculates
the metric mean, median, skew, and variance for each energy group using only metric values
in cells above the contributon median. Conversely, Figure 4.11c calculates the metric mean,
median, skew, and variance for each energy group using only metric values in cells above the
contributon median value.

The dots in each plot correspond to the same energy groups plotted in 4.10. That is,
the lowest energy is plotted in blue and the highest in red. Note that this type of plot is
possible because the Monte Carlo tally has been discretized to have the same binning as the
the deterministic code. It would be far more di�cult if the energy bin widths of the Monte
Carlo tally did not match the deterministic code.

The data that will be presented for each characterization problem can be subdivided
into three distinct categories: data primarily obtained by the Monte Carlo calculation, data
primarily obtained by the deterministic calculation, and data that is a combination of both.
The FOM values using Monte Carlo runtimes, for example, is in the first category. The
anisotropy metrics presented in Section 3.2.1 are an example of a determinstic-exclusive
dataset. The results presented in Figure 4.11 are a combination of both deterministic and
Monte Carlo-influenced results. In studying the ⌦ methods, we seek to understand how the
⌦ methods’ performance influence the Monte Carlo results. Beyond observing the FOM and
relative error distribution obtained in the Monte Carlo, the anisotropy metrics will provide
another avenue by which to investigate ⌦-method performance.

One may have deduced that the results for the characterization problems and the sub-
sequent angle sensitivity study will be substantive. Only the most pertinent fraction of the
available data will be presented with each problem in Sections 4.2 and 4.3. For example, in
most cases only a single figure–and perhaps only a single metric–from the three presented in
4.11 will be presented for a particular problem, because only one will show a trend relevant
to the ⌦-methods’ performance. A more extensive set of data and figures is accessible in the
public repositories listed in Appendix A.

4.2 Characterization Problem Results

To quantify the ⌦-method success for a variety of anisotropy-inducing physics, we will present
various forms of the Figure of Merit, as described in Section 3.2. In the preceding subsections,
a subset of flux anisotropy-inducing physics have been identified and a subset of problems
that contain these physics have been conceived. In this section, the results for CADIS-⌦,
CADIS, and nonbiased Monte Carlo will be presented for each of these problems. Expla-
nations on the performance of the ⌦ methods will accompany the results for each problem.
In some cases, variants of problems were run to confirm or refute observations seen in other
problems.
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4.2.1 Computational Specifications

As noted in a number of the previous sections, hybrid methods require both a deterministic
and a Monte Carlo calculation to obtain a problem result. These transport codes require dif-
ferent computational parameters to obtain an answer. For the characterization problems the
computational parameters are summarized in Table 4.4; the parameters for the deterministic
and Monte Carlo calculations are demarcated in the table.

Parameter Type Parameter Value

ADVANTG Values

PN Order 3
Quadrature Type Quadruple Range
Quadrature Order 10
Spatial Solver Step Characteristic
Energy Group Library† 27G19N
Boundary Conditions vacuum

MCNP Values

Particle Count 1e7
Boundary Conditions vacuum

† Parameter type that has no default in ADVANTG.

Table 4.4: Default simulation values for the characterization problems. The values for AD-
VANTG primarily signify parameters used to run Denovo, with exceptions for calculating
biasing parameters, which is done exclusively in ADVANTG. MCNP-specific values are those
used for Monte Carlo runs.

The first portion of the table summarizes the values used by ADVANTG. Note that these
values all pertain to the Denovo deterministic solver, which is set up by ADVANTG. The
parameter types marked with a dagger have no default in ADVANTG. We have chosen to use
a relatively course 27 group energy group library. Because the characterization problems are
meant to identify the method’s performance pertaining to flux anisotropy, and we expect the
energy group structure to have less of an e↵ect on anisotropy conditions than other param-
eters, we opted for a computationally inexpensive energy group mesh for the deterministic
solver. Further, this group library was designed for radiation shielding applications, so it
applies to the majority of the characterization problems.

The boundary conditions for all of the characterization problems will be vacuum. At
this time, ADVANTG does not support reflective or mirror boundary conditions so this is a
limitation in application space that we cannot address at this time. The Monte Carlo code
we use does support vacuum boundary conditions, but a discrepancy in boundary conditions
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between deterministic and Monte Carlo calculations would result in the simulation of a
fundamentally di↵erent problem.

Unless noted, the values in this subsection of the table are ADVANTG default values.
They are a good initial choice for characterization of the method because they are often
chosen as the parameters for hybrid methods studies by experienced and inexperienced
ADAVANTG users. Further, these values are defaults in ADVANTG for their computa-
tional stability, such as not having negative valued weights or fluxes, stable convergence, a
relatively fast time to a solution, et cetera. Due to the good properties exhibited by the
solver options and because users first using the ⌦-methods are likely to choose these values,
the values in Table 4.4 will be used for the characterization of the ⌦-methods.

The latter section of the table summarizes the Monte Carlo code MCNP values for each
of the problems. The value of 1e7 particles as a particle cuto↵ was chosen because it made
the error bins in the majority of the nonbiased Monte Carlo characterization problems less
than 100%. In some problems that are extraordinarily di�cult for Monte Carlo to solve
without biasing, there were tally bins with very high errors. In the following subsections
they will be clearly indicated and their results will not be plotted so as to not obfuscate the
CADIS and CADIS-⌦ results. Time cuto↵s were not chosen because we decided to measure
how e↵ective the ⌦ methods were at reducing the variance per particle. Depending on the
flux maps generated from CADIS and CADIS-⌦, the time to transport a finite amount of
particles may vary. As a result, the reported times from a simulation can tell us whether
the method requires more sampling than other methods in addition to how fast it takes to
reach a desired relative error.

The responses in the NaI detectors of each of the problems was measured with an MCNP
track length tally (f4). The tally was energetically binned to match the dataset of the
multigroup dataset provided in ADVANTG, and the entire volume of the detectors were
used with no spatial binning. It should be noted that while the tally is energetically binned,
Monte Carlo transport is not discretized in space or energy like deterministic transport. In
a nonbiased analog Monte Carlo calculation, transport is completely continuous in space,
energy, and angle. In a hybrid calculation using VR parameters from a deterministic solution,
the VR parameters will be discretized to reflect the solution obtained from the determinstic
solver. As a result, the particle’s transit throughout the problem will be a combination of
sampling both continuous and discretized-energy dependent factors. Consider a particle that
goes through a scattering event in shielding material. In this scattering event, the particle
samples from a continuous-energy cross section and changes direction based on its energy.
However, depending on how much energy it loses in the scattering event it may cross into
the energy range of a lower-energy weight window and will require further sampling.

All characterization problems were run on Remus, a machine operated and maintained by
the Radiation Transport and Nuclear Systems Division at Oak Ridge National Laboratory.
The ADVANTG runs were run on 16 cores of a 32 core node, with 256Gb of memory. The
MCNP runs were run on the same machine, with 256Gb of memory but using all 32 cores
of the node.

Each problem presented in Section 4.2 will use the values specified in Table 4.4 unless
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otherwise noted. Times to transport the Monte Carlo particle quantity varies between meth-
ods due to di↵erences in sampling. Monte Carlo and ADVANTG inputs and directions on
how to acquire them are provided in Appendix A.3.

4.2.2 Single Turn Labyrinth

The analysis of the characterization problems begins with the single turn labyrinth. The
single turn labyrinth FOM results are summarized in Table 4.5, and are illustrated in Figures
4.12 and 4.13. The table has six FOM values for CADIS and CADIS-⌦ results, and three
FOM values for the analog (nonbiased) Monte Carlo results. The equations to calculate each
of these FOMS is summarized in Table 4.2.

CADIS CADIS-⌦ analog
MC MChybrid MC MChybrid MC

tally avg 18.6 14.9 2.36 1.56 17.4
max RE 2.76 2.21 0.481 0.318 0.0857
min RE 249 200 196 130 –
time (mins) 67.7 84.4 157 237 11.7

Table 4.5: Figure of Merit comparison for single turn maze. The relative errors used are the
tally average relative error, the tally maximum relative error, and the tally minimum relative
error; the times are total walltimes for the Monte Carlo calculation and the sum of the hybrid
method software, the deterministic transport time, and the Monte Carlo calculation time.

CADIS CADIS-⌦ analog
time (minutes)

MCNP time total 67.71 157.01 11.67
deterministic time advantg time 0.26 0.28 –

denovo time 16.41 78.19 –
dispose time 0.01 0.40 –
omega time 0.00 1.61 –
total 16.67 80.08 –

wall time 84.38 237.09 11.67

Table 4.6: Detailed timing results for single turn maze.

In Table 4.5 the FOM results for CADIS, CADIS-⌦, and nonbiased Monte Carlo for
the single turn maze are presented. In all cases, the CADIS FOMs are better than those
obtained by CADIS-⌦. The FOMS calculated using the tally average relative error are
better in the nonbiased analog Monte Carlo than CADIS-⌦ as well. However, this is a
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product of two e↵ects: the time for the analog to run the same particle count is far shorter
than either CADIS or CADIS-⌦. As a result, to obtain the same FOM, CADIS-⌦ needs to
have R1/R2 =

p
T2/T1 (this is from taking a ratio of the FOMs) the tally average relative

error, or 0.27. Because this problem is highly scattering and many low-energy particles
can make it through the concrete labyrinth, even the analog can have good sampling at low
energies, resulting in a tally average FOM that reaches this threshold.

Table 4.6 contains more detailed timing information spent in each of the codes for each
type of problem. We can see that the Monte Carlo runtime for CADIS-⌦ is more than twice
that of CADIS, and almost fifteen times that of the nonbiased analog Monte Carlo. The time
to run just the hybrid/deterministic portion of the calculation is also four times longer for
CADIS-⌦ than it is for CADIS. These disparities in runtimes have a strong negative impact
on the CADIS-⌦ FOMs, which was observed in the FOM results in Table 4.5.

Figure 4.12: Tally results comparison between methods for single turn labyrinth.

Figures 4.12 and 4.13 show the tally result and the relative errors for each result in the
single turn maze, respectively. This particular relative error plot, Figure 4.13, does not
include the relative error bins of the analog result because they are significantly higher than
the CADIS and CADIS-⌦ results. This is further confirmed in Table 4.5, where the minimum
relative error FOM is a non-tallied bin.

By inspecting Figure 4.12, one can observe that the CADIS and CADIS-⌦ results are
in agreement in bins greater that 10�7 MeV. At lower energy bins, CADIS-⌦ generally
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Figure 4.13: Tally relative error comparison between methods for a single turn labyrinth.

has a higher value for the tally result than standard CADIS. However, in comparing the
errors for these low energy bins in Figure 4.13, CADIS has a lower relative error. This
indicates that CADIS sampled many more low-weight particles than CADIS-⌦ in these
regions. Conversely, CADIS-⌦ has a lower calculated relative error than CADIS for bins
greater than 5 ⇤ 10�6 MeV. This is expected, as higher energy particles generally exhibit a
stronger angular dependence than low-energy particles. In geometric and energetic regions
where the angular dependence is stronger, the importance map generated by CADIS-⌦ may
show more of an e↵ect in improving the relative error.

To aid in our understanding of how the ⌦-method’s importance map di↵ers from the
standard adjoint flux map, let us compare the flux distributions obtained by di↵erent de-
terministic solutions of the single turn labyrinth. Figure 4.14 shows several di↵erent flux
distributions that represent the single turn labyrinth geometry. This figure is of the highest
energy group for each flux type.

Figure 4.14a shows the forward flux for the labyrinth. It is clear that in this problem,
particles emenate isotropically outwards from the source on the left side of the problem.
Some particles travel towards the shield and enter the labyrinth. These particles travel 50cm
and hit the wall in the first turn of the labyrinth. Many high energy particles reach fairly
deep into the concrete past this turn, as indicated by the green channel partway through the
concrete.
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(a) Forward flux map for highest energy group, single turn labyrinth.

(b) Adjoint flux map for highest energy group, single turn labyrinth.

Figure 4.14b complements Figure 4.14a by showing the adjoint flux distribution for the
fastest energy group. Recall that this distribution is what is used by CADIS to generate
VR parameters. Particles are generated throughout the NaI detector and exit the detector
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(c) Contributon flux map for highest energy group, single turn labyrinth.

in all directions. Because the source is not in line with the labyrinth entrance, particles end
up colliding much closer to the labyrinth edge than in the forward distribution. There also
exist some prominent ray e↵ects in this distribution on the right hand side of the problem.
In particular, the contrasting orange and green fingers of the ray e↵ects show at least an
order of magnitude change in the flux for forward particles exiting the maze in this region.
In reality, the importance in this region should be close to a spherical surface some distance
away from the adjoint source.

Recall that the ⌦-flux is computed using the angle-integrated contributon flux in the
numerator. For this problem, the contributon flux will be used to illustrate how the ⌦-flux
is a combination of the adjoint and the contributon flux. Figure 4.14c shows the distribu-
tion of angle-integrated contributon flux values for the single turn labyrinth. Interestingly,
because so many forward particles penetrated deeply into the shield, the contributon flux
points directly into this section of the shield. It is also clear that near the forward source,
only particles moving in the direction towards the labyrinth entrance contribute to a high
contributon flux. In the left-side of the labyrinth, we can observe directional importance in
the labyrinth channels, but in the first turn this directional importance is no di↵erent than
the concrete barriers surrounding the channels.

Figure 4.14d shows how the ⌦-flux is built o↵ of the adjoint and contributon fluxes
by showing the ⌦-flux distribution for the single turn labyrinth. Comparing this figure to
4.14c, the majority of high flux regions are pushed back towards the NaI detector. The
flux gradient exiting the maze does not span as many orders of magnitude as it did in the
contributon flux plot, too. Further, the importance of particles does not remain as high or
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(d) ⌦-flux flux map for highest energy group, single turn labyrinth.

Figure 4.14: Flux map slice of single turn labyrinth. Flux maps have scales normalized to
maximum and minimum values for each slice; between plots the scales are not consistent.
These plots show the highest energy group, group 000, for each cell in the problem midplane.

go as deep into the concrete shield as the contributon flux plot. This is because the ⌦ flux
normalizes by the forward flux, resulting in reducing importance in regions where only the
forward flux is strong. As with the contributon flux, the ⌦-flux strongly reduces particle
importance near the problem boundaries. Recall from Section 2.2.3 that in the contributon
transport equation that the cross section becomes very high near problem boundaries, thus
encouraging particles back towards the problem source and sink. Because the ⌦-flux uses
standard forward and adjoint transport, the cross section is not manipulated. However, the
flux magnitude reflects importance consistent with contributon theory.

Both the ⌦- and the contributon fluxes show a mitigation of ray e↵ects on the right hand
side of the problem. Note that there are no “fingers” of flux magnitude at distances several
cm away from the NaI detector on the right side of the problem in either Figure 4.14c or
4.14d. Reducing these numerical appiritions is a positivie e↵ect of the method. However,
there exists a fairly strong gradient in flux magnitude for a particle travelling directly out
of the maze exit. As a result, a particle traveling several cm of distance across this strong
gradient line may move from a region of very low importance to very high importance,
causing very significant sampling requirements for the ⌦-importance that may not exist
with the standard adjoint.

A description of filtering algorithms accompanied the discussion of the anisotropy metrics
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in Section 4.1.3. The filtering algorithms are based on the contributon flux distribution in
the problem, or 4.14c. Recall that the two filter matrices discussed included those from cells
where the contributon flux is above the average contributon flux value, and where values
are above the mean contributon flux value. For the single-turn labyrinth, the filter matrix
in the highest energy group (Figure 4.14c) will use values in the orange and pink region of
the figure and exclude values from the blue and green regions of the figure. As a result, only
anisotropy metric values from within the maze will be used. The very anisotropic values near
the edge of the problem (where significant particle streaming exists), will not be included
because they are likely to be inconsequential to the tally response.

Figure 4.15: ⌦-flux flux map for lowest energy group, single turn labyrinth.

Figure 4.15 shows the ⌦-flux distribution for the lowest energy group. This di↵ers quite
a bit from 4.14d in that the flux in the labyrinth has a much stronger gradient once entering
concrete than the higher energy group. This is expected, as the mean free path of a low energy
neutron is much shorter than a high energy one, especially in a dense, hydrogenous material
like concrete. As a result of the stronger flux gradient in concrete, low energy particles
entering the concrete shield will be rouletted at a much greater frequency than high energy
particles. Particles exiting the labyrinth also have a lower gradient of importance that they
may cross than in the high energy flux map. As a result, particle splitting and rouletting in
this air region will be less extreme at low energies than at high energies.

Comparing the figures of ⌦-fluxes in 4.14d and 4.15, we can start to explain some of
the timing behavior observed in Tables 4.5 and 4.6. High energy particles exiting the maze
towards the tally detector have much longer mean free paths than the low energy particles,
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and will generally show a much stronger e↵ect in the ⌦-flux in those regions. This is illus-
trated in Figure 4.14d. The shape of the ⌦ flux around the detector region is much more
strongly dependent on direction in the high energy group 000 flux than it is for the lower
energy group 026 flux. Despite having lower relative errors than CADIS at higher energies,
CADIS-⌦ has lower FOMs than CADIS for the FOMS calculated with the minimum relative
error. As discussed previously, this is due to the long runtime of CADIS-⌦, which is more
than twice as long as CADIS. From this, we can conclude that while CADIS-⌦ is better at
transporting particles in high energy regions than CADIS, achieving lower relative errors,
the length of time to do so is prohibitive and achievable by CADIS should the runtimes be
the same for both.

4.2.3 Multiple Turn Labyrinth

The multiple turn labyrinth is built o↵ of the single turn labyrinth geometry. The labyrinth
materials are much the same, but the geometry di↵ers. Table 4.7 summarizes the Figure of
Merit results for CADIS, CADIS-⌦ and nonbiased Monte Carlo. Figures 4.16 and 4.17 show
the results obtained by the track length tally in each method.

CADIS CADIS-⌦ analog
MC MChybrid MC MChybrid MC

tally avg 327 248 224 71 0.054
max RE 1.46 1.11 1.02 0.322 0.0393
min RE 113 85.6 71 22.5 –
time (mins) 51.5 68 35.5 112 25.5

Table 4.7: Figure of Merit comparison for multiple turn maze.

CADIS CADIS-⌦ analog
time (minutes)

MCNP time total 51.52 35.55 25.46
deterministic time advantg time 0.25 0.21 –

denovo time 16.28 74.85 –
dispose time 0.01 0.40 –
omega time 0.00 1.74 –
total 16.53 76.80 –

wall time 68.05 112.35 25.46

Table 4.8: Detailed timing results for multiple turn maze.

In Tables 4.7 and 4.8 it is notable that the CADIS-⌦ runtime is shorter in the Monte
Carlo simulation than CADIS. This di↵ers most of the other cases presented in this section.
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However, it is also notable that because the deterministic time is so much longer for CADIS-
⌦, Thybrid ends up being greater for CADIS-⌦ than CADIS.

Table 4.7 shows that both CADIS and CADIS-⌦ outperform the analog by a factor of 102

or 103, indicating the necessity of variance reduction for a problem like this. In comparing
the FOMs, CADIS slightly outperforms CADIS-⌦ for all relative errors, meaning that the
time to reach any relative error will be achieved faster by CADIS.

Figure 4.16: Tally results comparison between methods for multiple turn labyrinth.

Looking at Figures 4.16 and 4.17, we can see that the analog Monte Carlo results di↵er
significantly from either CADIS or CADIS-⌦. Two distinct regions of tally bins have been
recorded in the analog case: a high energy region comprised of particles that have scattered
very few times before reaching the detector, and a much smaller low energy region, comprised
of particles that are very thermal. These thermal particles have a very small mean free path
in the concrete labyrinth, thus the majority of them were absorbed in the shield. However,
given the errors on this result, these results are not trustworthy. In the case of this problem,
some of what was discussed in the single-turn labyrinth is confirmed. This particular case
requires that particles scatter several more times if they are to exit the labyrinth from the
air duct. As a result, the spectrum is more thermal than the first case and the problem
has less anisotropy from the scattering e↵ects. As discussed in the single-turn labyrinth
subsection, CADIS outperformed CADIS-⌦ in problems in energy bins that had less angular
dependence. Because this problem has far more scattering event, it overall has less angular
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Figure 4.17: Tally relative error comparison between methods for a multiple turn labyrinth.

dependence and CADIS outperforms CADIS-⌦ in all energy bins. This problem is poorly
suited to CADIS-⌦.

Figure 4.18 shows the adjoint and ⌦ flux maps for the lowest energy group at the problem
midplane for the multiple turn labyrinth. These figures look remarkably similar, showing
that this problem does not have significant anisotropy to capture. The region that does
di↵er is near the detector region, where the region of high importance is focused towards
the labyrinth and the laybrinth exit. The other region with noticeable di↵erence is located
at the entrance to the maze. These figures show the lowest energy group particles, so for
forward particles of this energy to go the same direction as adjoint particles, they must have
gone into the labyrinth, scattered back out, and then scattered again. As a result, we do not
see a strong directional dependence in the ⌦-flux plot in the region near the forward source.
The adjoint flux plot shows more of a streaming e↵ect from the adjoint particles that exit
the maze.

In Section 4.2.2, it was discussed that higher energy regions that contribute to the tally
are more anisotropic, and that these regions benefit more from the ⌦-flux map than they do
with standard CADIS’ importance map. Using the anisotropy metrics from Section 3.2.1,
let us compare the anisotropy distributions of the single turn and multiple-turn labyrinth
problems. Figure 4.19 are violin plots of the M3 distributions of the labyrinth problems.
To filter out values of the metric distribtuion that do not have a strong importance to
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(a) Adjoint flux map for lowest energy group, multiple turn labyrinth.

contributing to the tally, only values from cells above the contributon flux mean value are
included in the violins.

First, looking at the metric three distributions for both the single- (4.19a)and multiple-
turn (4.19b) labyrinths, we can see that the violins in both plots shift from a fairly small
grouping of values at high enrgies to a broad range of values at low energies. The bottom of
the violin in each group also tells us a bit about the metric distribution. Because only values
from “more important” cells have been included in these distributions, the bottom cuto↵
tells us how anisotropic the cells of median importance might be. It also tells us how many
cells have high-valued anisotropy metrics. For both the single- and multi-turn labyrinths,
we see higher-valued cuto↵ point in high energies than in low energies. This indicates that
more cells in high energies have higher values of M3.

The violin plots of the multi-turn labyrinth (Fig. 4.19b) tend to span a larger range of
values. That is, the violins tend to be longer. All of the violins in both plots have a bounding
upper limit, meaning that in every energy group there are some very anisotropic cells. Inter-
estingly, it appears that for the multi-turn labyrinth the distribution of anisotropies at low
energies has no distinctive bunching, as observed in the single-turn labyrinth. This means
that in important cells, there is an even distribution of very anisotropic, slightly anisotropic,
and isotropic cells.

While the violin plots of Figure 4.19 are useful in seeing the overall distribution of metrics
for the whole problem, it is also possible to plot them similarly to the flux maps shown
previously. Figure 4.20 shows the M4 distribution for the single and multiple turn labyrinth
problems. Recall that this metric is the ratio of the contributon anisotropy to the standard
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(b) ⌦-flux flux map for lowest energy group, multiple turn labyrinth.

Figure 4.18: Flux map slice of multiple turn turn labyrinth. Flux maps have scales nor-
malized to maximum and minimum values for each slice; between plots the scales are not
consistent. These plots show the lowest energy group, group 026, for each cell in the problem
midplane.

(a) M3 distribution for single turn labyrinth

adjoint anisotropy. Cells that have blue coloring are those where the contributon max to
average flux is lower than the adjoint. As a result, the forward and adjoint fluxes to not
synergitically combine in angle. This generally means this is a region of lower importance.
Values of unity mean that the contributon anisotropy is comparable to the adjoint anisotropy.
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(b) M3 distribution for multi-turn labyrinth

Figure 4.19: Violin plots of M3 distribution using values above the mean contributon flux for
labyrinth problems. Low energy group numbers correspond to high energies or fast particles,
and are marked in red.

(a) M4 lowest energy group, single turn labyrinth.

In figure 4.20a, it is clear that the concrete body of the maze is a region where the anisotropies
are similar.

Figure 4.20a shows that the region where the anisotropy of the contributon flux di↵ers
the most from the adjoint flux is in the air region near the detector, and also in the air
regions of the maze. Specifically, the anisotropy of the contributon flux is greater in the
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(b) M4 for lowest energy group, multiple turn labyrinth

Figure 4.20: M4 distributions at problem midplane for labyrinth problems.

air region between the detector and the maze, and the anisotropy of the contributon flux
is lower in regions behind the detector. Conceptually, we expect this anisotropy behavior
in the region just past the detector, as the contributon flux will combine positively if the
forward and adjoint fluxes are travelling in opposite directions, and will combine negatively
if they are travelling in the same direction. As a result, the anisotropy of the contributon
flux behind the detector will be minimized when compared to the original adjoint angular
flux.

Figure 4.20b shows, like Figure 4.20a, the M4 distribution at the problem midplane for
the lowest energy group for the multiple turn labyrinth. In this problem we similarly see
the strongest anisotropy in the flux near the NaI detector. However, the range of values
is di↵erent. The concrete region of the maze still shows similar anisotropies between the
contributon and adjoint angular fluxes. The maze edge next to the NaI detector also has
some fairly anisotropic regions, but overall the anisotropies are less di↵erent in this problem
than in the single turn labyrinth. As a result, CADIS-⌦ does not have as much angular
information to capture, and its importance map is less e↵ective. This was also illustrated in
the flux map comparison of Figure 4.18.

Both figures have interesting secondary features in the anisotropy in the air regions. These
regions look similar to ray e↵ects, but are not always reflected in the flux maps themselves.
The author is not sure how to explain these e↵ects, but they are worth future study.

It must be noted that while the trends in these violins are interesting, we must also be
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wary of using comparing the violins directly. The filtering algorithm used to pull values out is
dependent only on the contributon flux solution for that problem, so the average contributon
flux cuto↵ for the single-turn labyrinth and multiple-turn labyrinth are di↵erent. Using a
raw value from the violin plot in Figure 4.19b and directly comparing it to one from Figure
4.19a may be misleading. Instead, this analysis will focus on the general behavior of the
metrics in each problem, not specific metric values.

(a) RE improvement factor as a function of M3 statistics for single turn labyrinth

(b) RE improvement factor as a function of M3 statistics for multi-turn labyrinth

Figure 4.21: Relative error improvement factor as a function of M3 distribution statistics.
Metric distribution statistics are calculated using values of M3 in cells with contributon flux
values above the mean. Colors of datapoints correspond to the energy group to which they
belong.

Figure 4.21 shows the improvement factors of the relative errors between CADIS-⌦ and
CADIS for the labyrinth problems. The x-axes of the plots in Figures 4.21a and 4.21b use
the distribution statistics from the violins in Figures 4.19a and 4.19b, respectively. Recall
that because IRE is the ratio of the relative error between CADIS-⌦ and CADIS–and we seek
a low relative error–that values of IRE below 1.0 indicate method improvement for CADIS-⌦.

Looking at the di↵erences between Figures 4.21a and 4.21b, some interesting e↵ects can
be observed. Recall from the relative error distribution plots for each problem (Figures 4.17
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and 4.13) that CADIS-⌦ had higher relative errors in all energy bins than CADIS for the
multi-turn labyrinth, and a higher relative error in thermal energy groups in the single-turn
labyrinth. Figure 4.21a shows the isolated grouping of poorer results for low energy bins in
the single turn labyrinth. The rest of the values in this figure all show improvement in the
relative error, while the low-energy group show better performance for CADIS. There is no
distinct grouping in Figure 4.21b because all of the CADIS-⌦ relative errors are higher than
CADIS, so a distinct turnover in IRE does not occur.

There does not seem to be a tight trend observable for any measurement of the M3

distribution and IRE in Figure 4.21a, but the higher values of IRE generally occur in high
mean values of M3 and higer variances of M3. Figure 4.21b also shows this trend in the
metric mean and variance subplots, with a single outlier in an intermediate energy group. It
also appears that the spread of IRE values does not change as a function of any of the metric
values.

(a) FOM improvement factor as a function of M3 statistics for single turn labyrinth

(b) FOM improvement factor as a function of M3 statistics for multi-turn labyrinth

Figure 4.22: Figure of Merit improvement factor as a function of M3 distribution statistics.
Metric distribution statistics are calculated using values of M3 in cells with contributon flux
values above the mean. Colors of datapoints correspond to the energy group to which they
belong.
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Figure 4.22 builds o↵ of what we’ve already observed in Figure 4.21. In this series of
figures, IFOM is plotted rather than IRE. If CADIS-⌦ has better FOM performance than
CADIS, the resulting value of IFOM will be above 1.0.

Many features from Figure 4.21 continue in Figure 4.22. The distinct grouping of low-
energy results for the single turn labyrinth are also observable in 4.22a. The intermediate
energy outlier for the multiple turn labyrinth is located at the bottom of all of the subplots
in Figure 4.22b. By adjusting our results to include timing, even less of a trend with metric
distribution measurements is seen in the improvement metric for the single turn labyrinth.
However, for the multiple turn labyrinth it does appear that as the metric mean value
increases, IFOM decreases.

4.2.4 Steel Beam

The steel beam embedded in concrete FOM and timing results are summarized in Tables
4.9 and 4.10. Figures 4.23 and 4.24 show the results obtained by the track length tally in
CADIS, CADIS-⌦ and the nonbiased analog Monte Carlo.

CADIS CADIS-⌦ analog
MC MChybrid MC MChybrid MC

tally avg 668 659 3e+03 2.96e+03 1.39
max RE 3.74 3.69 6.79 6.71 0.0448
min RE 1.43e+03 1.41e+03 1.33e+03 1.31e+03 –
time (mins) 414 420 2.09e+03 2.11e+03 22.3

Table 4.9: Figure of Merit comparison for steel bar embedded in concrete.

CADIS CADIS-⌦ analog
time (minutes)

MCNP time total 414.45 2086.60 22.33
deterministic time advantg time 0.18 0.18 –

denovo time 5.69 25.64 –
dispose time 0.00 0.16 –
omega time 0.00 0.66 –
total 5.87 26.49 –

wall time 420.32 2113.09 22.33

Table 4.10: Detailed timing results for steel bar embedded in concrete.

Tables 4.9 and 4.10 show that this problem is very di�cult for analog Monte Carlo
and that CADIS-⌦ generally performs better than CADIS. In fact, CADIS-⌦ has the best
performance in this problem of all of the characterization problems.
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For both CADIS and CADIS-⌦, this problem has a huge disparity in the FOMs calculated
with the maximum and minimum relative error. As a result, depending on the convergence
requirements that a user might require, the time to achieve a desired solution could vary
significantly in applications. However, both CADIS and CADIS-⌦ improve on the unbiased
analog Monte Carlo’s FOM by a factor of 102 or more.

CADIS-⌦ outperforms CADIS for the FOMS calculated with the tally average relative
error and the tally maxmimum relative error. This indicates that giving a limiting relative
error to which all energy bins must converge, CADIS-⌦ will achieve it in 1/3rd the time
that CADIS will. Further, CADIS-⌦ has a better FOM than CADIS when the deterministic
runtimes are added. As shown in the timing table, the time to run and generate the variance
reduction parameters for CADIS-⌦ will always be longer than CADIS due to the addition
of the forward transport run. The addition of deterministic runtimes has the potential to
lower the FOM of CADIS-⌦ more than that of CADIS, so CADIS-⌦’s achievement of a FOM
higher FOM with much longer runtimes in both Monte Carlo and ADVANTG illustrates just
how much lower the relative error it achieves is. CADIS-⌦ is very well-suited to a problem
with these conditions.

Figure 4.23: Tally results comparison between methods for steel bar embedded in concrete.

Figure 4.23 shows that CADIS and CADIS-⌦ are in agreement for the tally results in
all energy bins. The nonbiased Monte Carlo calculation di↵ers from both of the hybrid
methods. This supports what was observed in the nonbiased analog FOM values of Table
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Figure 4.24: Tally relative error comparison between methods for steel bar embedded in
concrete.

4.9. Figure 4.24 shows that CADIS-⌦ achieves a consistently lower relative error than CADIS
for all energy bins. For most energy bins, CADIS-⌦’s relative errors are shifted a consistent
fraction below CADIS’. In the energy regions between 10�4 and 10�1 MeV, this is not the
case. For these energy regions CADIS’ relative errors spike while CADIS-⌦’s do not.

From the FOM results presented in Table 4.9 and the tally results and error in Figures
4.23 and 4.24, we can conclude that CADIS-⌦’s source biasing parameters consistently move
more particles in all tally energy bins more e↵ectively than CADIS. The importance map
generated by CADIS-⌦ better reflects the problem physics and more e�ciently transports
particles to the desired tally location.

4.2.4.1 Air Channel Variant

The characterization problems have been designed to induce anisotropy in the flux. Most
of these problems do so, in some part, by using air to induce particle streaming. The
steel beam in concrete problem requires that particles interact with a high density material
(either steel or concrete) before reaching the detector to induce a response. These next
two variant problems explore whether the material choice of steel strongly a↵ects the ⌦-
method’s ability to generate variance reduction parameters. This first variant keeps the
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geometric configuration of the steel beam problem the same, but the steel is replaced with
air. If the ⌦-methods are more sensitive to air, then this change in the materials composition
should a↵ect the results.

cadis cadisangle analog
MC MC adjusted MC MC adjusted MC

tally avg 432 390 396 364 5.63
max RE 1.17 1.05 0.247 0.227 0.0467
min RE 273 247 296 272 –
time (mins) 47.3 52.3 247 268 21.4

Table 4.11: Figure of Merit comparison for air variant of the steel beam problem geometry.
In this variant problem, the steel bar volume region is replaced with air to exacerbate the
suggested splitting issues encountered in other hybrid problems.

cadis cadisangle analog
time (minutes) time (minutes) time (minutes)

MCNP time total 47.29 246.83 21.42
deterministic time advantg time 0.16 0.15 –

denovo time 4.90 20.50 –
dispose time 0.00 0.15 –
omega time 0.00 0.65 –
total 5.05 21.30 –

wall time 52.34 268.13 21.42

Table 4.12: Detailed timing results for steel beam geometry air variant.

Tables 4.11 and 4.12 summarize the FOM and timing results for the air variant of the steel
beam problem. Comparing the FOMs for this variant and for the steel variant (Table 4.9), it
is clear that CADIS-⌦ performs more poorly than CADIS with air. Interestingly, CADIS-⌦’s
minimum relative error FOM is better than CADIS’, which is opposite to the results for the
standard steel problem. For the maximum relative error, CADIS-⌦’s FOM is 1/5th that of
CADIS’. However, for this problem CADIS-⌦’s runtime is almost five times that of CADIS.
Considering this time di↵erence, it appears that CADIS-⌦ requires far more sampling with
its importance map than CADIS. These sampling requirements also exist with the original
steel problem, but the importance map reduces the tally variance enough to o↵set the time
addition. This is not the case for the air variant. From this, we can conclude that the
addition of air into this problem geometry reduces the sampling interaction points enough to
negatively a↵ect the ⌦-method. Further, it lowers the FOMs achieved by both CADIS and
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CADIS-⌦ substantially that their improvement over the nonbiased analog reduces almost an
order of magnitude.

The runtimes in Table 4.12 are also worth comparing with the original steel variant.
In particular, the deterministic runtime in both of the promblems is on the same order of
magnitude. However, the Monte Carlo runtime is far longer in the original steel version.
The runtimes in the air variant are generally much shorter for CADIS and CADIS-⌦, but
comparable for the nonbiased analog. In this problem, the fraction of time spent in the
deterministic solve is much higher than in the steel version.

4.2.4.2 Concrete Channel Variant

In addition to the air variant of the steel beam geometry, we can see if having non-preferential
flowpaths might a↵ect the ⌦-method’s performance. Recall that the ⌦-methods have been
designed to incorporate angular information into the importance map. If no preferential
flowpaths exist through the problem geometry, then the ⌦-importance map may have less
of an impact on improving the tally convergence. However, because the entire shield is
composed of concrete, then the distance to smapling location should still be quite small as
with the original steel version of the problem. As a result, there should be some positive
e↵ects on the ⌦-methods due to sampling interaction frequency. Tables 4.13 and 4.14 show
the FOM and timing results for this material variant of the steel beam geometry.

cadis cadisangle analog
MC MC adjusted MC MC adjusted MC

tally avg 2.6e+03 2.55e+03 3.16e+03 3.13e+03 1.54
max RE 14.5 14.2 9.48 9.39 0.0457
min RE 1.54e+03 1.51e+03 1.4e+03 1.39e+03 –
time (mins) 385 393 1.98e+03 2e+03 21.9

Table 4.13: Figure of Merit comparison for concrete variant of steel bar geometry. In this
variant problem, the steel bar volume region is replaced with concrete to eliminate the
preferential particle travel through the beam region.

Tables 4.13 and 4.14 show the results of the concrete variant of the steel beam problem.
As with the original steel and air versions described previously, the runtimes for CADIS-⌦
are quite long when compared to CADIS. In each variant, the runtimes are about five times
longer than those observed for CADIS. Similarly to the steel variant, in this version CADIS-
⌦ achieves a superior FOM for the tally average FOM. However, CADIS-⌦’s FOMS for the
maximum and minimum relative error FOMs are both lower than CADIS’. Both CADIS and
CADIS-⌦ far outperform the nonbiased analog Monte Carlo.

To compare the performance of each of the variants of this problem, let us first compare
the di↵erences in the flux distributions for the ⌦ and CADIS versions of the problem. Figure
4.25 shows the adjoint and ⌦ fluxes for the steel beam in concrete version of this geometry.
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cadis cadisangle analog
time (minutes) time (minutes) time (minutes)

MCNP time total 385.11 1978.46 21.88
deterministic time advantg time 0.23 0.15 –

denovo time 7.42 19.58 –
dispose time 0.00 0.09 –
omega time 0.00 0.56 –
total 7.65 20.29 –

wall time 392.76 1998.75 21.88

Table 4.14: Detailed timing results for concrete variant of steel bar.

It is clear from both of these two figures that there is a preferential flowpath through the
steel beam for both the standard adjoint and for the ⌦-fluxes.

(a) Adjoint flux distribution, lowest energy group

As with the multiple-turn labyrinth, the flux maps are very similar between the adjoint
and ⌦-flux plots in this figure. Recall that M2 is the ratio of the scalar ⌦-flux to the scalar
adjoint flux in each cell. Figure 4.26 shows the M2 distributions for each of the material
variants of the steel beam problem. Figure 4.26a contains the distribution of M2 for the
original steel variant, Figure 4.26b is of the variant with air replacing the steel, and Figure
4.26c. Note that Figure 4.26b has the colormap scaled to a log scale, while the other two
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(b) ⌦-flux distribution, lowest energy group

Figure 4.25: Flux maps for steel beam in concrete. Fluxes shown are at problem midplane,
and energy group 026. The colormap for each has been scaled to the data in the plane.

figures do not. This is because the range is much larger in this figure, and a linear scale
obscures the data.

By comparing the ratio of the ⌦- to adjoint-fluxes in each of the figures in 4.26, the
e↵ect that material choice has on changing the ⌦-flux becomes more apparent. First, all
three plots show a constant value of M2 within the concrete shield itself. As a result, we
can conclude that materials in which the particles have a small mean free path of travel,
the flux isotropy is fairly constant and does not di↵er between the ⌦- and adjoint fluxes.
Next, having a preferential flowpath through the shield does change the resultant ⌦-flux.
Depending on material, the flux may be very di↵erent (as with the air in Figure 4.26b) or
fairly similar (as with the flux ratio in the steel in Figure 4.26a). All three problems show
a very di↵erent distribution of fluxes near the adjoint source. This is the case with both of
the labyrinth variants previously discussed.

The subfigures of Figure 4.27 complement those presented in Figure 4.26. As with Figure
4.26, the subfigures here are normalized by the adjoint problem. Rather than comparing the
adjoint scalar fluxes, here the contributon anisotropy in each cell is compared to the adjoint.
Similar features can be observed between the subfigures in 4.27 and their counterparts in
4.26. For exmaple, the anisotropies in the cells in the shield are the same as the adjoint. As
a result, we see little- to no- di↵erence between the ⌦-method aniosotropy or the standard
adjoint anisotropy. Figure 4.27b shows some interesting streaming e↵ects on the anisotropy
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(a) M2 distribution for steel beam in concrete.

(b) M2 distribution for steel beam in concrete, air variant.

in the air channel within the shield. In particular, the contributon anisotropy is larger for
the majority of the air channel than the adjoint anisotropy. There is an exception to this
observation at the M4 values marked with dark blue in the air channel.
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(c) M2 distribution for steel beam in concrete, concrete variant.

Figure 4.26: M2 distribution plots for material variants of steel beam in concrete. Distribu-
tion shown is for lowest energy group. Scales adjusted to match dataset of each figure.

(a) M4 distribution for steel beam in concrete.
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(b) M4 distribution for steel beam in concrete, air variant.

(c) M4 distribution for steel beam in concrete, concrete variant.

Figure 4.27: M4 distribution plots for material variants of steel beam in concrete. Distribu-
tion shown is for lowest energy group. Scales adjusted to match dataset of each figure.
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All three subfigures in 4.27 show that there exist di↵erences in the anisotropy near the
adjoint source and near the forward source in all material variants of this problem. Unlike
the subfigures of 4.26, the anisotropies extend all the way to the problem boundaries in the
air regions of the problem. However, the anisotropy in the area of each problem near the
detector is generally larger than the anisotropy in the area neaer the forward source.

With an intuition of how the ⌦ and adjoint-scalar fluxes di↵er both on the cell-scale, and
how their anisotropies di↵er on the cell scale, we can now look at the e↵ectiveness of each at
predicting the ⌦-method’s success (or lack thereof). Recall that Figures 4.26 and 4.27 show
the anisotropy distributions for the lowest energy group. On the next several figures, the
data illustrated by these figures will correspond with the darkest blue violin and the darkest
blue scatterplot data point, respectively. The next several figures attempt to collapse the
substantial quantity of data available in Figures 4.26 and 4.27 to values with which we can
correlate with ⌦- relative error or FOM improvement.

(a) M4 distribution for steel beam geometry

(b) M4 distribution for air beam geometry
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(c) M4 distribution for concrete beam geometry

Figure 4.28: Distribution plots of M4 for the steel beam problem geometry material variants.
Distributions have been filtered from cells that are in bins above the contributon average
flux in each problem. Coloring corresponds to energy group, red indicates a higher energy
group and blue a lower energy group.

The beam problem material variants provide a very interesting opportunity to see the
e↵ect of material properties on IRE and on the anisotropy metric distributions. Based on
observations, the distributions for M4 will be shown for these problem variants in 4.28 and
4.29. Figure 4.28a shows the M4 distribution for each energy group as a violin plot for the
original steel version of the problem. Figures 4.28b and 4.28c show the air and concrete
variants of the problem, respectively. Note the similarity between the metric distributions
for the steel and concrete variants of the problem (Figs. 4.28a and 4.28c). The metric
distributions have similar ranges, similar distributions, and similar mean values. The only
energy groups where there are noticeable di↵erences are in the highest energy groups, where
the local minimum values di↵er, and in energy group three, where the distribution between
the two problems di↵ers.

Compare what was observed in the concrete and steel variations of the problem to Figure
4.28b, which contains the M4 distributions for air. The range in values for each of these
violins is much larger than either 4.28a or 4.28c. Energy group 11 does not bottom out as it
does in the previous two problems. The fastest energy group is strongly peaked upwards, as
are many low energy groups. While the distribution of each of the metrics for this problem
are much broader, the main body of the distributions are centered around lower values than
either 4.28a and 4.28c.

The di↵erences in the violin plots are purely due to di↵erences in the sampling physics of
the problem. Despite di↵erent materials in the concrete and steel variants of the problem,
4.28c and 4.28a have similar violin distributions. This tells us that while the overall energy
spectrum of the problem may be di↵erent, the distribution of anisotropy within the problem
may be more dependent on how likely particles are to collide. That is, because both steel
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and concrete have higher interaction probabilities than air, their anisotropy distributions
will be closer to each other than air.

Because the problem geometries and mesh sizes are identical between each of these prob-
lems, it is likely that the selection of values is at similar locations in each of the problems.
However, because the filter matrix described in Section 4.1.3 is based on the contributon
flux, which is problem specific, these will still di↵er between problems. Further, the number
of cells selected from each energy group will di↵er between problems.

(a) IRE for M4 for steel beam geometry

(b) IRE for M4 for air beam geometry

Based on the violin plots in 4.28, it was observed that the M4 distribution was far
di↵erent in the air variant of this problem geometry than the steel or concrete variants. This
is also observable in Figure 4.29, which plots the relative error improvement metric, IRE

with di↵erent metric distribution values. Recall that a low IRE means that the ⌦ method
achieved a superior relative error to standard CADIS.

Figures 4.29a through 4.29c shows the relative error improvement factors for each of the
steel beam material variants described in 4.28. For both the steel and concrete problems,
CADIS-⌦ has favorable values for IRE in most energy bins. In Figures 4.29a and 4.29c there
appears to be a trend in IRE with both the metric variance and the metric skew–the ratio
of the mean to the median values–which indicates that the metric distribution rather than
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(c) IRE for M4 for concrete beam geometry

Figure 4.29: Scatterplots of values describing M4 distribution against IRE for steel beam
problem geometry material variants. As with the distributions in 4.28, M4 is based on
values filtered out in cells located above the contributon flux average value. The values
on the x-axes of the figures are evaluated based on the subset of M4 values. Coloring of
datapoints correspond to the energy groups.

the metric average are more likely to be related to the improvement in the relative error for
these problems. This trend is not observable for the air variant in Figure 4.29b. In fact, the
metric mean and median values are better indicators for IRE than the distribution values.

Looking at the distributions of IRE it is clear that despite the similar metric distribution
values, the concrete and steel variants of this problem do have di↵erent performances. Dis-
regarding energy group 11, which is an outlier in all three problem figures, the two problems
have similar ranges of IRE. However, the highest energy groups have the lowest IRE for
the concrete problem, while the lowest values in the steel problem occur in in intermediate
energy groups.

4.2.5 U-Shaped Corridor

The U-shaped air corridor embedded in concrete FOM and timing results are summarized
in Tables 4.15 and 4.16. Figures 4.30 and 4.31 show the results obtained by the track length
tally in CADIS, CADIS-⌦ and the nonbiased analog Monte Carlo.

Much like the single- and multiple-turn labyrinths, the U-shaped air corridor has a path-
way of preferential movement for particles in a concrete shield. In this problem, the particles
travel down the legs of the u-bend to a detector on the other side of the corridor. The
particles should have preferential flowpaths through the air ducts, but it is possible for low
energy particles to traverse the concrete barrier between the source and detector. The high
energy particles tallied in the detector are more likely to have traveled through the air ducts
and the low energy particles may be supplied from the shield or from scattering down the
air duct.

The FOM table for the u-shaped corridor shows that this is a fairly di�cult problem
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CADIS CADIS-⌦ analog
MC MChybrid MC MChybrid MC

tally avg 64.1 51.9 60.2 38.3 0.378
max RE 0.0183 0.0148 0.0144 0.00913 0.0644
min RE 14.9 12 13.4 8.54 –
time (mins) 54.6 67.5 188 296 15.5

Table 4.15: Figure of Merit comparison between methods for U-shaped air corridor in con-
crete.

CADIS CADIS-⌦ analog
time (minutes)

MCNP time total 54.61 187.92 15.54
deterministic time advantg time 0.19 0.21 –

denovo time 12.68 105.90 –
dispose time 0.01 0.35 –
omega time 0.00 1.49 –
total 12.87 107.60 –

wall time 67.48 295.52 15.54

Table 4.16: Detailed timing results for U-shaped air corridor in concrete.

for CADIS, CADIS-⌦, and the analog. For the tally average FOM, CADIS and CADIS-⌦
achieve a FOM two orders of magnitude higher than the nonbiased analog. Both methods
have comparable FOMs. In fact, CADIS and CADIS-⌦ are in relative agreement for all FOMs
calculated with the Monte Carlo runtime. Interestingly, the nonbiased analog Monte Carlo
has a higher maximum relative error FOM than either method. However, this analog tally
for this problem has many nontallied bins (as can be gathered from the major discrepancy
in results in Figures 4.30 and 4.31). For the few bins that were tallied, the analog has a high
FOM.

The tally results for the u-shaped corridor in Figure 4.30 show general agreement between
CADIS and CADIS-⌦. The nonbiased analog has no agreement with either method. Com-
paring their relative errors in Figure 4.31, we can gather that this is a di�cult problem for
both methods. At high energies both CADIS and CADIS-⌦ have very high relative errors,
indicating untrustworthy results. To get the relative error in these regions for CADIS-⌦
to below 0.10–a fairly standard threshold for Monte Carlo–it would have to run nearly 40x
longer, or 900 hours. However, CADIS-⌦ achieves a uniformly lower relative error than
CADIS for all energy bins. Because the time to run CADIS-⌦ is so much longer, the FOM
is impacted and appears worse than CADIS. Therefore, should CADIS-⌦ use the same run-
time as CADIS, CADIS will achieve superior relative errors. Conversely, if CADIS-⌦ uses
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Figure 4.30: Tally results comparison between methods for U-shaped air corridor in concrete.

the same particle count as CADIS, CADIS-⌦ will achieve superior relative errors.
While the u-shaped bend problem does not have FOMs for CADIS-⌦ that significantly

improve upon CADIS’, CADIS-⌦ still achieved lower relative errors than CADIS. Figure
4.32 shows the flux distributions in the U-bend located at the midplane containing the NaI
detector. Figure 4.32a shows the adjoint scalar flux, Figure 4.32b shows the angle-integrated
contributon scalar flux, and Figure 4.32c shows the ⌦-flux, all at the same problem midplane.

As with the single-turn labyrinth, the adjoint scalar flux in Figure 4.32a shows substantial
ray e↵ects in the air regions near the adjoint source. As expected, the ray e↵ects are mitigated
once the particles interact with concrete. The di↵erence in flux value between the orange
region and the yellow regions of the plot is on the order of two- to three- orders of magnitude.
The two ray e↵ect fingers are separated by a distance of 10-20cm, meaning that a particle
traversing air in this region may experience fairly large di↵erences in importance between
scattering events.

In this problem the forward source is o↵set in the z-plane from the detector by 100cm.
The e↵ects of this on the flux are visualized well by the contributon flux in Figure 4.32b. In
the left-leg of the u-bend, the contributon flux decreases near the bottom. This is because
particles are more biased in a deeper z-plane, towards the forward source. It is also clear
from this figure that in the high energy region, the contributon flux streams particles through
the concrete shield.
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Figure 4.31: Tally relative error comparison between methods for U-shaped air corridor in
concrete.

(a) Adjoint flux distribution, highest energy group



CHAPTER 4. CHARACTERIZATION PROBLEMS AND RESULTS 116

(b) Contributon flux distribution, highest energy group

(c) ⌦ flux distribution, highest energy group

Figure 4.32: Flux distributions at problem midplane for U-shaped corridor. Distributions
shown are for the highest energy group. In this problem the forward source and detector
region are located in di↵erent z-plane locations.

The ⌦-flux shown in Figure 4.32c does not attempt to force particles through the shield
like the contributon flux, nor does it have as substantial of ray e↵ects as the adjoint scalar
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flux distribution. However, the ray e↵ects in this variant are not completely mitigated. There
appears to be a cone of particles extending into the u-bend that are of greater importance
than the other regions near the detector. This is a clear e↵ect of the forward flux distribution.
However, the region just to the right of the detector location is of possible consequence.
Between the detector and directly to the right, the flux decreases in magnitude more than
two orders of magnitude. It is possible that the large gradient in importnace could be
adversely a↵ecting the time achieved by the ⌦ methods for this problem.

(a) M3 distribution, visualized in plane containing detector

Figures 4.33a and 4.33b show the anisotropy metrics for the u-shaped bend. Figure 4.33a
shows the M3 distribution, which as one may recall is the ratio of the contributon maximum
angular flux to the contributon average angular flux in the cell. M4, which is visualized in
Figure 4.33b, divides M3 by the ratio of the maximum to average adjoint angular fluxes.

Comparing these two figures we can identify the e↵ect of this normalization on the
anisotropy metrics. Beginning with the M3 distribution plot in Figure 4.33a, it is clear
that we still observe the secondary ray e↵ects in the flux anisotropies that were observed
in the labyrinth problems. On the right side of the u-bend, we observe ray e↵ects in the
aniostropy that are likely from the adjoint flux distribution. On the left side of the bend
we observe oblong circular distributions of anisotropy. These are more likely to be from
particles emanating forward source distribution. The contributon flux anisotropies are much
stronger in the air channels than in the concrete shield, as we would expect. In the shield
immediately bounding the air, we observe a fairly isotropic flux distribution, but as particles
reach closer to the edges the anisotropy increases slightly.

The M4 distributions shown in 4.33b show how certain features of the anisotropy are
removed when using the control adjoint angular flux. In particular, the shield region becomes
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(b) M4 distribution, visualized in plane containing detector

Figure 4.33: Anisotropy metrics plotted at problem midplane (z = 55) for U-shaped corridor.
Energy group shown is for lowest energy.

completely normalized, meaning that the isotropy in the contributon flux matches that of the
adjoint flux. The air regions are where real and substantial di↵erences occur. In particular,
we see peaks in the anisotropy where the forward and adjoint fluxes meet. At the top of the
bend, the adjoint and forward fluxes have scattered relatively few times and thus generate a
high aniosotropy in the contributon flux.

These anisotropy plots illustrate how in certain regions the flux anisotropy may be very
high. Further, they show regions where the fluxes strongly interact with one another. In ad-
dition to helping to quantify the e↵ectiveness of the method, they reveal interesting features
of the solution that may not be obvious using standard flux figures.

4.2.6 Shielding with Rebar

The problem with rebar embedded both in the x- and y- directions in concrete has results
summarized in Tables 4.17 and 4.18. Figures 4.34a and 4.34b show the results obtained by
the track length tally in CADIS, CADIS-⌦ and the nonbiased analog Monte Carlo.

The FOM results for the rebar-embedded concrete show that this is a very poor problem
for CADIS-⌦, in general. CADIS-⌦ has lower FOMs than CADIS in all measures. CADIS-
⌦ spends fractionally over five–both deterministically and in Monte Carlo–the transport
time that CADIS does. Further, CADIS-⌦ has poorer FOMs in both the tally average and
maximum relative error than the nonbiased analog. This is due to CADIS-⌦ requiring nearly
30x longer to run Monte Carlo than the nonbiased analog.
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CADIS CADIS-⌦ analog
MC MChybrid MC MChybrid MC

tally avg 1.15 1.09 0.0136 0.0127 0.948
max RE 0.0345 0.0327 0.00117 0.00109 0.0186
min RE 235 223 199 186 –
time (mins) 328 346 1.55e+03 1.66e+03 53.8

Table 4.17: Figure of Merit comparison between methods for rebar-embedded concrete.

CADIS CADIS-⌦ analog
time (minutes)

MCNP time total 327.81 1550.54 53.82
deterministic time advantg time 0.28 0.29 –

denovo time 17.70 105.09 –
dispose time 0.03 0.41 –
omega time 0.00 2.05 –
total 17.98 107.43 –

wall time 345.79 1657.97 53.82

Table 4.18: Detailed timing results for rebar-embedded concrete.

(a) Tally results comparison.
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(b) Tally relative error comparison.

Figure 4.34: Tally result and error for rebar-embedded concrete, monodirectional Monte
Carlo source

Figure 4.34a shows that the tally results for the rebar-embedded concrete do not gen-
erally agree between any method. CADIS and CADIS-⌦ have better agreement with each
other than with the nonbiased analog, but at high energies their results di↵er significantly.
However, in comparing their relative errors in Figure 4.34b, the large discrepancy in their
results is explained by the very high relative errors in this region. As with the U-shaped
air corridor, neither method achieves satisfactory relative errors below 0.10 in high energy
bins. However, both methods achieve comparatively good relative error results in energy
bins below 10�1 MeV.

It is interesting that this problem appears to perform far more poorly than the steel beam
in concrete. At this point, we must ask ourselves why a similar, but slightly more complex
problem would have such substantively di↵erent results in the FOMs. This problem is
undoubtedly di�cult for both CADIS and FW-CADIS, but why does CADIS-⌦ have such a
poor performance in high energy bins which are usually more anisotropic than lower energy
bins.

Section 4.1.2 described that flux anisotropy can be induced by the problem materials,
geometry, or the source definition. Three of the characterization problem have monodirec-
tional sources: the steel beam in concrete, the rebar-embedded concrete, and the nuclear
medicine therapy room. At this point in the work it was discovered that ADVANTG does
not support monodirectional sources, though it has in the past. As a result, the importance
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maps generated by ADVANTG/Denovo automatically use an isotropic source distribution.
However, the Monte Carlo input is not edited to reflect an isotropic source. As a result, the
importance map does not match the physics in the problem.

This di↵erence in the source definition did not a↵ect the steel bar in concrete problem
(Section 4.2.4) because the source comprises the entire wall at x = 0. However, both the
rebar and the medical therapy room will have importance maps that do not match the
physics of the defined Monte Carlo input. The results presented in Tables 4.17 and 4.18,
as well as Figures 4.34a and 4.34b reflect a Monte Carlo simulation with a monodirectional
source and a deterministic solver providing an importance map with an isotropic source.
This, though unexpected, issue provides an opportunity for us to investigate the ⌦-method’s
sensitivity to incorrect importance maps.

Tables 4.19 and 4.20 show the FOM and timing results for a Monte Carlo simulation
with an isotropic source defined. Note that the deterministic times in Table 4.20 match
those in Table 4.18. This is because the lack of support for monodirectional sources results
in a deterministic solution that is agnostic to the defined Monte Carlo source. Figures 4.35a
and 4.35b show the tally results and relative error for the case where the Monte Carlo and
deterministic sources are consistent.

cadis cadisangle analog
MC MC adjusted MC MC adjusted MC

tally avg 80.5 45.6 260 132 0.257
max RE 1.52 0.862 1.31 0.662 0.109
min RE 221 125 214 109 –
time (mins) 23.5 41.4 111 218 9.15

Table 4.19: Figure of Merit comparison between methods for rebar-embedded concrete,
isotropic Monte Carlo source.

The results in Table 4.19 are quite di↵erent than those in Table 4.17. The time for both
CADIS and CADIS-⌦ is reduced by more than an order of mangitude. In the original run
of this problem, CADIS-⌦ took 1,500 minutes to converge. Here that time is reduced to 111
minutes. Further, the tally average and tally maximum RE FOMs change between the tables
by several orders of magnitude. This means that in addition to the shortened time reducing
the FOMs, the relative errors also improved between the monodirectional and isotropic point
source variants.

The tally results between Figs. 4.35a and 4.34a, show that having a consistently defined
source between deterministic and Monte Carlo transport results in a closer tally result be-
tween CADIS and CADIS-⌦. This is also confirmed in Figs. 4.35b and 4.34b. In the origianl
version of ths problem CADIS-⌦’s relative errors at energy bins > 10�1 were more than twice
that of the REs achieved by CADIS. Interestingly, we see the opposite occur in the isotropic
source definition. In figure 4.35b, CADIS has some energy bins with relative errors almost
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cadis cadisangle analog
time (minutes) time (minutes) time (minutes)

MCNP time total 23.47 110.67 9.15
deterministic time advantg time 0.28 0.29 –

denovo time 17.70 105.09 –
dispose time 0.03 0.41 –
omega time 0.00 2.05 –
total 17.98 107.43 –

wall time 41.45 218.10 9.15

Table 4.20: Detailed timing results for rebar-embedded concrete, isotropic Monte Carlo
source.

(a) Tally results comparison.

9x thos of CADIS-⌦ in the same bin. However, it is worth noting that the scales between
these two problems is very di↵erent. The highest RE achieved by CADIS in Figure 4.35b is
lower than either CADIS or CADIS-⌦’s RE in the monodirectional problem.

The plots in Figure 4.36 show the highest energy flux for the foward problem in Fig.
4.36a and the lowest energy ⌦-flux distribution for the ⌦-method in Figure 4.36b. Figure
4.36a clearly shows that the plate source on the left side of the problem is isotropically
emitting particles. The ⌦-flux in Figure 4.36b shows the preferential flowpaths for particles
through the steel at low energies. Recall that the deterministic flux distributions will not
change between the isotropic and monodirectional source definitions in Monte Carlo, so these
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(b) Tally relative error comparison.

Figure 4.35: Tally result and error for rebar-embedded concrete, isotropic Monte Carlo source

(a) Forward flux distribution, highest energy group

figures and any map of the metric distributions in the problem are the same regardless of
the Monte Carlo source definition.
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(b) ⌦ flux distribution, lowest energy group

Figure 4.36: Forward and ⌦-flux distributions, rebar embedded in concrete. Slice is located
at y = 100 centimeters

(a) M2 distribution, lowest energy group.
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(b) M3 distribution, lowest energy group.

(c) M4 distribution, lowest energy group.

Figure 4.37: Metric distributions for rebar-embedded concrete. Slice at y = 100 centimeters.
Lowest energy group distributions shown.
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The subfigures of 4.37 show the M2, M3, and M4 distributions for the lowest energy group
for the rebar problem. Recall that the M2 distribution directly compares the ⌦ and adjoint
scalar fluxes. Figure 4.37a shows that the biggest deviations of the ⌦-flux from the adjoint
are near the adjoint source. This was similarly observed in the steel beam problem variants.
The regions of concrete are the same between CADIS and CADIS-⌦, but the rebar support
structure shows that the ⌦ flux has a slightly higher importance for these regions. Glancing
back towards the adjoint source region, the flux importances can be seen separating into
fingers that line up with the concrete blocks in the problem.

The M3 distribution of 4.37b shows the anisotropy of the contributon flux for this problem,
and the M4 distribution in Figure 4.37c shows the result of normalizing this anisotropy by
the adjoint anisotropy. In the concrete blocks of Figure 4.37b some interesting anisotropy
distributions occur closer to the forward source. As with Figure 4.37a, we can see the
anisotropies separate into fingers that line up with the concrete blocks. On the adjoint source
side of the shield, the anisotropies are the highest right next to the concrete blocks. On the
forward source side of the shield, the areas next to the blocks are the least aniosotropic.
When the metric is normalized by the adjoint in Figure 4.37c, some of the anisotropy e↵ects
are mitigated, meaning that the adjoint angular flux is the driving force behind the features
that we observed in Figure 4.37b. However, on the forward source side of the shield there
are strong anisotropies that line up with each of the metal rebar strucutres.

(a) M3 distributions rebar embedded in concrete, filtered above the mean contributon flux.

While the metric distributions and the flux maps do not di↵er between the Monte Carlo
source types, the scatterplots of IRE and IFOM will. Figure 4.38a shows a violin plot of
the M3 distributions for this problem. Figure 4.38b shows IRE for the problem with a
monodirectional Monte Carlo source trended against several metric values for M3 values
using the mean contributon flux filtering algorithm. Figure 4.38c shows these trends for
the problem with an isotropic Monte Carlo source using the mean contributon flux filtering
algorithm.

After inspecting the metric distributions against IRE and IFOM , no distinct trends were
observable with any metric and either improvement factor. Because M3 had the best trends,
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(b) IRE for M3 for rebar embedded in concrete, monodirectional Monte Carlo source.

(c) IRE for M3 for rebar embedded in concrete, isotropic Monte Carlo source.

Figure 4.38: M3 distribution and IRE scatterplot for rebar-embedded in concrete. Values of
M3 have been filtered to be from cells that are above the contributon mean value.

it is included in the plots of Figure 4.38.
Figure 4.38a shows that low energy cells have a large spread but no centering value.

There exist some very anisotropic cells at low energy groups, but there exist also exist some
very isotropic cells. Conversely, in high energy groups the metric distribution has a very
clumped distribution of values where the contributon max angular flux is higher than the
average contributon angular flux in the cell.

Using values that can be computed from the distributions shown in Figure 4.38a, the
relative error improvement between CADIS-⌦ and CADIS can be plotted as shown in Figs.
4.38b and 4.38c. The x-values between each of these figures will be the same, but the
y-ordinate values will di↵er as a result of their di↵ering Monte Carlo source distributions.

In general Figure 4.38b shows there exist many energy bins where CADIS-⌦ achieves
a poorer relative error than CADIS. The bins where the comparative error is the worst is
in intermediate energy regions. At low energy regions the relative errors are comparable,
but as shown in the timing table, the FOM will be much lower for CADIS-⌦. There does
appear to be a slight trend in IRE with the ratio of the metric mean to the metric median
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and with the metric variance. As with the steel beam problem, this shows that the metric
distribution is a better predictor of the improvement in the relative error than the metric
average or median value. However, these trends are not strong, and it would be di�cult to
predict the performance of a similar problem based on metric distributions. Comparing the
results of Figure 4.38c to Figure 4.38b, some of these observations change with the isotropic
source definition. First, CADIS-⌦ performs better than CADIS uniformly in all energy bins.
Next, there exists no trend in the metric distribution and IRE. We cannot conclude that any
version of the M3 distribution can predict whether the ⌦ method will improve convergence
for this problem.

It is possible that the filter matrix is not fine enough for this particular problem to
pull out metric values of high importance, but even values filtered out above the mean
contributon flux did not have strong correlations. However, with the cuto↵s appearing in
the distributions of 4.38a, choosing too high of a filter value may also remove much of the
metric distribution.

Both CADIS and CADIS-⌦ improve in the relative errors that they achieve as a resulf
of having a source distribution that matches between the Monte Carlo and deterministic
runs. As a result, the comparison between isotropic and monodirectional sources in this
problem shows that having an importance map that does not match the problem will slow
down convergence. Further, we can conclude that CADIS-⌦ is more sensitive to having
an importance map that doesn’t match the Monte Carlo. This may be because the larger
gradients in importance exacerbate splitting and rouletting from an unexpected source.

4.2.7 Therapy Room

The problem with a simplified representation of a nuclear medicine therapy room has FOM
summarized in Table 4.21. Figures 4.39a and 4.39b show the results obtained by the track
length tally in CADIS, CADIS-⌦ and the nonbiased analog Monte Carlo. Note that the
results for this problem had issues with reported times for the deterministic run, so the
adjusted Monte Carlo (FOMhybrid) is not reported and the timing table is not reported.

cadis cadisangle analog
MC MC adjusted MC MC adjusted MC

tally avg 5.81 5.71 106 8.34 2.81
max RE 0.463 0.455 0.822 0.0649 0.0136
min RE 37.6 37 32.9 2.6 0.793
time (mins) 44.7 45.4 39.9 506 248

Table 4.21: Tally relative error comparison between methods for simplified medical therapy
room, Monte Carlo monodirectional source.

The therapy room with a monodirectional Monte Carlo source is a problem where CADIS-
⌦ performs fairly well when compared to CADIS and the nonbiased analog Monte Carlo.
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(a) Tally results comparison.

(b) Tally relative error comparison.

Figure 4.39: Tally result and error for simplified medical therapy room, monodirectional
Monte Carlo source.
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For the Monte Carlo runtime-exclusive FOMs, CADIS-⌦ achieves better FOMs than CADIS
and the nonbiased analog in both the tally average relative error and the tally maximum
relative error. This is likely due to a softening of the importance map as a result of the
concrete walls surrounding the therapy room. As a result, reflecting forward and adjoint
particles decrease the strong gradient that exists in other problems, like the exit of the single
turn labyrinth.

For this problem, CADIS-⌦ achieved similar relative errors to CADIS for intermediate-
and fast- energy bins. However, for low energy bins CADIS performed poorly and CADIS-⌦
achieved satisfactory relative errors. These low energy bins are the only ones where CADIS-
⌦ really substantially outperformed CADIS. In a similar problem it would be advantageous
to use CADIS-⌦ as a method, but with deterministic runtime incorporated it may still
be worthwhile to run with CADIS instead. If a user desires a tally with low energy bins
exclusively, CADIS-⌦ will be the advantageous method.

cadis cadisangle analog
MC MC adjusted MC MC adjusted MC

tally avg 29.8 11.4 192 72.4 52.3
max RE 0.829 0.316 3.51 1.32 0.292
min RE 387 148 423 159 10.7
time (mins) 287 753 281 747 91

Table 4.22: Tally relative error comparison between methods for simplified medical therapy
room, Monte Carlo isotropic source.

As discussed in Section 4.2.6, the monodirectional source distribution in Monte Carlo
is not actually reflected in the importance map generated by ADVANTG. As a result, the
results for the isotropic source are shown in Table 4.22 and Figure 4.40.

Comparing the results from Tables 4.22 and 4.21, the isotropic source definition does
improve the FOMS achieved by CADIS, CADIS-⌦, and the analog Monte Carlo. The min-
imum relative error FOMs see a factor of 10 improvement for both CADIS and CADIS-⌦.
The time to run the biased problems is quite a bit longer, which is likely due to the place-
ment of the source in the problem. Because the monodirectional source forced particles into
the water phantom, they were sent into a region with relatively little variation in the flux.
The ⌦-method, in particular, avoids a region with very strong preferential flow. Avoiding
splitting and rouletting as a result of crossing paths with large variations in the flux would
allow the problem to run faster.

Despite the longer runtimes, CADIS and CADIS-⌦ both achieve better FOMS in every
measure by changing the source definition. Again, the e↵ects of using the wrong importance
map are reflected in longer runtimes for both problems.

Figure 4.40 shows the tally result and relative error for the isotropic source defined in
Monte Carlo. Comparing the tally results of the isotropic source in Figure 4.40a to the
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(a) Tally results comparison.

(b) Tally relative error comparison.

Figure 4.40: Tally result and error for simplified medical therapy room, isotropic Monte
Carlo source.
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monodirectional in Figure 4.39a, we can see that the results between all three methods
agree better for the isotropic source distribution. The shapes of the relative error compare
similarly between Figs. 4.40b and 4.39b, however the relative errors achieved by CADIS and
CADIS-⌦ are far smaller in the isotropic case. In both source definitions, CADIS struggles
transporting low energy particles more than intermediate- or high-energy particles. CADIS-
⌦ handles these energies better, but it struggles in the lower-energy resonance regions slightly
more than CADIS. As a result, there is some tradeo↵ with e↵ectiveness for each method.

(a) Forward flux distribution, highest energy group

The flux maps for the therapy room are shown in Figure 4.41. Figure 4.41a shows
the forward flux for the highest energy group. This figure has very strong ray e↵ects that
dominate the flux behavior near the water cell and near the forward source. Over just a
few centimeters, the forward flux varies two- to three- orders of magnitude. The wall to
the bottom right of the figure shows some secondary ray e↵ects that occur after scattering.
This is much more subtle than near the forward source, but there are three groupings of flux
direction after this scatter, which may be magnified in the ⌦-flux by the adjoint.

Figures 4.41b and 4.41c show the adjoint and ⌦-fluxes for the therapy room problem.
Unlike the labyrinth variants, where the ⌦ methods softened ray e↵ects, there exist much
stronger ray e↵ects in the ⌦-flux map for the therapy room. This is because the ray e↵ects are
primarily from the forward flux, which does not a↵ect the standard adjoint flux whatsoever.
However, the integration of the forward and adjoint in the ⌦ calculation causes some of the
forward ray e↵ects to be carried over into the adjusted adjoint. A compounding factor to this
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(b) Adjoint flux distribution, highest energy group

is that the adjoint particles travel in exactly the opposite direction to the forward particles
at the region where the hallway meets with the room. It was discussed previously that the
contributon flux will be magnified if forward and adjoint particles are travelling in opposite
directions. Not only is this the case in the therapy room, but they are travelling in oppoiste
directions down a ray e↵ect. This magnifies the ray e↵ect in the problem, so there is a tight
band of particle travel diagonally across the ⌦ problem.

Figure 4.42 shows the M4 distribution and the trends of IRE for di↵erent values of the M4

distribution for both the isotropic and monodirectional variants of the therapy room. These
figures do not use a filtering algorithm. This is because this particular problem was run on a
slightly earlier version of ADVANTG that did not output the angle-integrated contributon
fluxes. As a result, the values used for the filter matrix are not accessible, and filtering
cannot be used in this analysis. Future studies of this particular problem should compare
the e↵ects of the filtering algorithms of the distributions of Figs. 4.42b and 4.42b.

Figure 4.42a shows the full violin plots by energy group for the therapy room. Here we see
that the lower energy groups have values clustered around a value slightly above 1. Violins
in intermediate to high-intermediate energy groups have a lower mean value than the low
energy violins, but their distribution tends to broaden. The broadening of the distribution
is particualrly evident for energy group violins valued  8.

Figures 4.42b and 4.42c show the e↵ect that this distribution has on IRE for both the
monodirectional and isotropic variants of the problem. Again, non of the anisotropy metrics
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(c) ⌦-flux distribution, highest energy group

Figure 4.41: Flux distributions at z = 150 centimeters for radiation therapy room.

(a) Unfiltered M4 distributions medical therapy room.

showed a strong trend for IRE or IFOM with any distribution, so the best figure was included
here. Recall that a value below unity for these figures indicates that CADIS-⌦ achieved a
lower relative error in that bin. In both figures CADIS-⌦ has roughly half of its values above
unity and half below. There are some very low energy bins in which CADIS-⌦ far outperforms
CADIS, but then there are intermediate energy groups that CADIS-⌦’s performance falters.
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(b) IRE for M4 for therapy room, monodirectional Monte Carlo source.

(c) IRE for M4 for therapy room, isotropic Monte Carlo source.

Figure 4.42: M4 distribution and IRE scatterplot for medical therapy room.. Values of M4

have not been filtered with a filtering algorithm.

Neither figure shows a particular trend, but the metric skew does appear to be the subplot
most closely resembling a trend.

In comparing Figure 4.42 to 4.38, this problem does not show as significant of a change in
IRE with respect to changing source definitions. This means that the ratio of relative errors
between CADIS and CADIS-⌦ remains the same, despite both achieving far lower relative
errors overall in the isotropic case. That means, for this problem, CADIS and CADIS-⌦ are
both equally sensitive to a mismatch in importance map. This could be a result of the large
fraction of air in the problem, which dominates the behavior of both methods. Conversely,
the rebar problem required both CADIS and CADIS-⌦ to sample frequently in the center of
the problem, so the e↵ects of mismatching maps was more isolated from other e↵ects.

4.3 Sensitivity to Deterministic Parameter Choice

At this point in the ⌦-method characterization, it has been shown how the ⌦-methods behave
in problems with di↵ering geometries and materials. However, each of the problems presented
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in Section 4.2 was run with the same deterministic calculation parameters. While the angular
flux may have di↵ered in these problems due to di↵erences in the way the problems were
constructed, it did not vary due to deterministic solver choices. Some deterministic solver
choices will change the angular fluxes used to calculate the ⌦-flux. Consequently, this may
a↵ect the behavior of the ⌦-methods. This section will explore the e↵ects of deterministic
solver choices on the ⌦-method’s performance.

Section 4.2 showed that the ⌦-methods have a strong weakness to “thin” materials, as
CADIS and FW-CADIS do. Recall that a “thin” material is characterized by a low density,
and thus a low macroscopic cross section, or interaction probability. In a pure streaming
problem, the particle flux will decrease by a factor of r2 from the source and never interact.
In a thin material, a particle may stream several centimeters before interacting. As a result,
the importance of a particle, which is related to the adjoint- or omega-flux, may vary several
orders of magnitude over a mean free path of travel distance. At a collision, the particle
then requires several orders of magnitude of sampling events.

The ⌦-method’s weakness to “thin” materials was confirmed by running the steel beam
problem with air and concrete in the geometric location of the steel beam. In the “thin”
material air version, CADIS-⌦ performed poorer than CADIS. This was a strong contrast to
the same geometric configuration with a steel beam, where CADIS-⌦ outperformed CADIS.
The success of CADIS-⌦ in this problem also showed that the incorporation of the ⌦-flux
into a problem with materials with very di↵erent moderating properties but both with high
probabilities of interaction, improves the performance of the ⌦-methods beyond CADIS or
the nonbiased analog.

Due to CADIS-⌦’s superior performance to CADIS in the problem with a steel beam
in concrete, this is the problem that will be used to characterize CADIS-⌦’s sensitivity to
deterministic parameter choice. In this section, the e↵ect of deterministic solver choices on
the performance of the ⌦ methods will be investigated. In particular, we are interested in
how parameters that influence the angular flux will a↵ect the performance of the ⌦-methods.
By using the same problem with di↵ering solver options, the e↵ect of solver options can
be isolated from the material and geometric e↵ects. By doing so, we seek to determine
how resilient the ⌦-methods may be to using low-fidelity solver options, how di↵erent the
sensitivity of the ⌦-methods are to solution quality when compared to CADIS, and how
varying angular parameters may speed up or slow down the time to a desired solution. By
quantifying these e↵ects, we can determine the best parameter selection for the ⌦-methods
for this type of problem.

4.3.1 Parametric Study Description

The angle sensitivity parametric study will cover the subset of computational parameters
that are most likely to influence the ⌦ method’s solution. Because the ⌦-flux is calculated
from an angular integration of the forward and adjoint flux, calculation parameters that are
most likely to influence the angular flux solution are the variables that will be perturbed.
The two parameters that will be studied are the quadrature order and the PN order.



CHAPTER 4. CHARACTERIZATION PROBLEMS AND RESULTS 137

The quadrature used in a deterministic solver is used do discretize the problem in angle.
Quadrature options are split into two separate selections: the quadrature set or type, and
the quadrature order. Because the ⌦-methods require rotational symmetry, only quadrature
sets that have rotational symmetry (generally these are triangular quadrature sets) can be
used with the ⌦-methods. In ADVANTG/Denovo, the triangular quadrature sets are: linear-
discontinuous finite element, level-symmetric, and quadruple range. As discussed previously,
quadruple range is selected as the ADVANTG default because it has good properties and
guarantees positivity in the flux. Di↵erent quadrature sets have separate properties and are a
realm of study unto their own. Thus, we will vary only quadrature order and not quadrature
type in this sensitivity study.

Quadrature orders specify how fine of a resolution the quadrature set will be. As quadra-
ture order increases, the angular discretization becomes finer, and the size of the angular
flux matrices increases. The ⌦ methods use angular flux values that are written to a file
after a Denovo transport solve, which are then read into memory to compute the ⌦-flux.
We expect to observe much slower deterministic recorded times in Tdet–and, by extension,
Thybrid–for high quadrature orders because of the I/O demand to read and write the angular
flux values. This I/O demand will not be as extreme for standard CADIS, as the angular flux
values are not written in that case. Recall that the ADVANTG default quadrature order is
10. The quadrature orders used for the sensitivity study aimed to choose orders surrounding
this value. This resulted in quadrature orders 5, 7, 10, 12, 15, 17, and 20 being chosen for
variations in this parameter.

The PN order determines the fidelity of the scattering expansion. The availability of PN

orders is dependent on the cross section dataset that is being used. For the 27G19N cross
section library, the PN order extends to 5. As a result, PN orders of 1, 3, and 5 are chosen
for variations in this parameter.

While the PN order does a↵ect angular information in the problem, it will not change
the size of the angular flux matrices. As a result, deterministic runtimes between di↵ering
PN orders may vary, but not as significantly as they will in di↵ering quadrature orders due
to the lack of change in I/O requirements as PN order changes.

Other deterministic parameters may influence the variance reduction parameters calcu-
lated by the ⌦ methods. The spatial discretization, while not a primary factor influencing
the angular flux, still may a↵ect the ⌦-methods’ performance. A finer energy group struc-
ture may also influence the ⌦-method solution. Finer energy groups will more e↵ectively
reflect resonance regions in scattering and absorption. Scattering e↵ects in certain energy
regions will have angular dependence and, thus, may have a stronger e↵ect on the angular
flux than a coarser energy discretization. Because these particular solution e↵ects do not
directly influence the angular flux and angular e↵ects will be di�cult to isolate, they will
not be included in the angular sensitivity parametric study.

Several factors in the deterministic calculation should not have a strong e↵ect on the
angular flux distribution. These include the spatial solver, the convergence criteria for the
solvers, and the within group solver types. Because these factors should not influence the
angular flux any more than any other part of the solution, they will also not be included in
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this parametric study.

4.3.2 Quadrature Order

The results that will be presented in the next two subsections will be similar to those pre-
sented in Section 4.2. However, our goal is to see how changing deterministic parameter type
a↵ects the results in the tally region. With this in mind, the presentation of the results may
be adjusted to more e↵ectively show the e↵ect each parameter has on influencing the Monte
Carlo transport.

Table 4.23 contains the FOM results for each of the quadrature orders run in the para-
metric study. The results are grouped by FOMs calculated with the same relative error.
The first three sections of the table pertain to di↵erent FOM values, and the last section of
the table shows timing results for the standard Monte Carlo (TMC) and the total walltime
(Thybrid) for the calculation.

In the tally average relative error subsection of Table 4.23, two strong dips in the FOM
appear in the CADIS results at SN orders 5 and 10, and a dip in the CADIS-⌦ FOMs occur
at SN order 12. These dips are much larger relatively than in the maximum or minimum
relative error subsections of the table. This indicates that for these particular quadrature
orders, fewer particles contribute to the detector response across all groups. We can also see
in the CADIS-⌦ results that quadrature orders 10, 15 and 17 all have a similar FOM for the
tally average relative error using the Monte Carlo runtime. However, the FOMs for the same
quadratures do not decrease more significantly when using Thybrid to calculate the FOM, as
suggested in Section 4.3.1. This suggests that the increased deterministic runtime for I/O is
o↵set consistently by the change in the FOM between quadrature orders for CADIS-⌦.

In this subsection of the table it is also notable that the oscillations between maximum
and minimum FOM values is much larger for CADIS-⌦ than for CADIS. For low quadra-
ture orders, CADIS-⌦ shows substantial improvement in the FOM, while CADIS remains
somewhat constant (this is omitting the major dips in FOM values noted in the previous
paragraph). At higher quadrature orders, however, CADIS-⌦’s performance is inverted and
decreases with increasing quadrature order. CADIS, however, remains fairly constant in
FOM for SN orders 12 and above. Both methods far outperform the nonbiased analog
Monte Carlo run.

The maximum relative error portion of the table also has several notable datapoints.
For CADIS, the dips in FOM are still visible for SN orders 5 and 10, but quadrature order
7 does not achieve the same high FOM as quadrature orders 12 and above as it does in
the tally average subsection of the table. If the maximum relative error convergence is the
limiting factor for the user, it appears that using any quadrature order above 10 is a good
choice for CADIS. CADIS-⌦, conversely, has more varied results. No observable trend exists
in the FOM with increasing quadrature order for CADIS-⌦. A dip in the FOM occurs at
quadrature order 12, as it did in the tally average subsection of the table. This dip, like
CADIS’ dips, is not as significant as the dip in the tally average FOMs. Generally, CADIS
has higher FOMs when using the maximum relative error as a success metric. In fact, the
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only quadrature order where CADIS-⌦’s FOM is larger than CADIS’ is at quadrature order
10.

CADIS CADIS-⌦ analog
SN order MC MChybrid MC MChybrid MC

tally avg

SN 5 683 677 1.81e+03 1.79e+03

1.39

SN 7 2.55e+03 2.53e+03 2.46e+03 2.45e+03
SN 10 669 659 2.96e+03 2.93e+03
SN 12 2.46e+03 2.41e+03 187 183
SN 15 2.48e+03 2.42e+03 2.98e+03 2.92e+03
SN 17 2.47e+03 2.39e+03 2.96e+03 2.88e+03
SN 20 2.46e+03 2.35e+03 1.89e+03 1.81e+03

max RE

SN 5 4.89 4.85 2.86 2.84

0.0448

SN 7 7.71 7.64 4.35 4.32
SN 10 3.74 3.69 6.71 6.64
SN 12 14.3 14.1 0.764 0.748
SN 15 14.7 14.3 3.87 3.79
SN 17 14.8 14.4 7.98 7.78
SN 20 14.1 13.5 6.09 5.85

min RE

SN 5 1.14e+03 1.13e+03 1.09e+03 1.09e+03 –
SN 7 1.37e+03 1.36e+03 1.26e+03 1.25e+03 –
SN 10 1.43e+03 1.41e+03 1.32e+03 1.3e+03 –
SN 12 1.46e+03 1.43e+03 1.33e+03 1.3e+03 –
SN 15 1.47e+03 1.43e+03 1.32e+03 1.3e+03 –
SN 17 1.46e+03 1.42e+03 1.31e+03 1.28e+03 –
SN 20 1.46e+03 1.39e+03 1.31e+03 1.26e+03 –

Time (mins)

SN 5 302 305 1.13e+03 1.14e+03

22.3

SN 7 324 327 1.62e+03 1.63e+03
SN 10 414 420 2.11e+03 2.14e+03
SN 12 406 414 2.09e+03 2.14e+03
SN 15 404 413 2.1e+03 2.14e+03
SN 17 405 418 2.11e+03 2.17e+03
SN 20 406 425 2.12e+03 2.21e+03

Table 4.23: Figure of Merit results for steel beam embedded in concrete, with variations in
quadrature order. Subdivisions of the table indicate calculations of the FOM using di↵erent
relative errors. The analog case has a single value for each relative error as it is not dependent
on changes in deterministic calculation parameters.

In the minimum relative error subsection of Table 4.23 the CADIS and CADIS-⌦ FOM
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behavior is much more well-behaved than it is for the preceding two subsections of the table.
There are no dips in the FOM value for either method, so the lowest relative error will
consistently get better with increasing quadrature order. A slight shift to a < 1% lower
FOM occurs for quadrature orders 17 and 20, which indicates that increasing quadrature
fidelity does not help improve the FOM past SN order 15. Similar behavior is observable for
CADIS-⌦ in the minimum relative error subsection of the table. CADIS-⌦ has a consistently
lower-valued FOM between 5%-10% for all quadrature orders when compared to CADIS. A
turnover occurs in the CADIS-⌦ FOMs at a lower quadrature order, meaning that CADIS-⌦
does not benefit from increasing SN order as much as CADIS using this FOM as a metric.
However, beyond quadrature order 15 neither method sees a benefit in the FOM by increasing
the quadrature order.

The timing results in the last section of the table show how much longer it takes CADIS-⌦
to transport the standard Monte Carlo than CADIS. This was also noted in Section 4.2.4. In
the introduction to this section, it was predicted that the I/O demands for CADIS-⌦ would
impact the MChybrid FOMs as quadrature order increases. However, because the CADIS-⌦
Monte Carlo times are already so much longer than CADIS’, this impact is not as significant
as expected. Further, the increase in deterministic runtime seems to change similarly to the
increase in Monte Carlo runtime as the importance map changes. This explains why the
FOMs were not impacted so negatively in the previous sections of the table.

Let us use an illustrative example to compare the FOMs between CADIS and CADIS-
⌦. Returning again to Table 4.23, at SN order 5 the non-MC runtime is three minutes for
CADIS, while it is around ten minutes for CADIS-⌦. At SN order 20, the CADIS non-MC
runtime is 19 minutes; the CADIS-⌦ time is 100 minutes. For each of these cases, the non-
MC runtime is about 4% that of the Monte Carlo runtime. Because this fractional time is
fairly consistent between CADIS and CADIS-⌦, we do not see a strong impact on FOMhybrid

from the significantly longer non-MC runtimes in CADIS-⌦.
Table 4.23 shows that for the FOM using the tally average relative error, CADIS-⌦

outperforms CADIS for most quadrature orders (with excpetions being SN orders 7 and
12). For the majority of the quadrature orders, CADIS-⌦ gets more particles to the tally
region than CADIS in the same amount of time. By increasing quadrature order, CADIS-⌦
generally increases the number of particles to the tally as a whole, while CADIS remains fairly
constant. The table also shows that by using either the maximum or minimum relative error
to calculate the FOM, CADIS generally outperforms CADIS-⌦. However, while both the
maximum and minimum RE FOMs increase with increasing quadrature order in CADIS,
this is not the case for the tally average FOM. This could be interpreted as that as the
quadrature order increases, more particles reach the extreme tally bins, but fewer particles
end up in the tally overall. For CADIS-⌦, this behavior is not quite the same. Instead, a
peak occurs in the tally average FOMs at intermediate quadrature orders, and the minimum
RE FOM decreases with increasing quadrature order.

In the Subsection 4.2, it was discussed that while the FOM shows how quickly a tally
may approach a desired value, it does not show how e↵ectively each method transported
particles to the tally location. Because the same particle count was used in each variation
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(a) Relative errors of CADIS results for di↵ering SN orders.

of the steel beam problem in the angle sensitivity study, the relative error results achieved
by each method can reveal how well each method transported the same number of starting
particles. The next several plots will present this information.

Figures 4.43a and 4.43b show the relative errors for all tally bins for each quadrature order
run of the problem with the steel beam in concrete for CADIS and CADIS-⌦, respectively.
Unlike Table 4.23, these plots show the overall behavior of the tally results as a function of
changing quadrature order, so the behavior of non-extreme tally bins can also be observed.
As noted in the discussion accompanying Table 4.23, these intermediate are important in
evaluating the tally average relative error.

Figure 4.43a plots the tally relative error results for each of the CADIS runs, binned by
energy. The warmer colored red and orange lines show the low quadrature order results,
while the cooler colored lines correspond to higher quadrature results. For all of the energy
bins below 10�4 MeV, a reduction in the relative error with increasing quadrature order can
be observed. For quadrature orders SN 12 and above, the relative error does not show as
much of an improvement in the relative error. Between 10�4 and 100 MeV, large spikes in
the relative error for quadrature orders 5 and 10 exist, explaining the poor behavior of the
tally average RE FOM and tally maximum RE FOM for CADIS. Quadrature order 7 has
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(b) Relative errors of CADIS-⌦ results for di↵ering SN orders.

Figure 4.43: Relative error results for CADIS (Figure 4.43a) and CADIS-⌦ (Figure 4.43b)
for di↵erent quadrature orders for the problem with a steel beam in concrete.

relative errors much closer to quadrature orders 12 and above. Because these relative error
spikes span so many bins, they a↵ect the overall tally convergence, and, by extension, the
tally average FOM. At very high energies (> 100 MeV), there is very little improvement in
the relative error with increasing quadrature order.

Figure 4.43b shows the relative error results for CADIS-⌦. A number of interesting
features exist in this figure that are not reflected in Figure 4.43a. For example, in the lowest
energy region a decrease in the relative error is seen up to SN 10, but then the relative
error increases for higher SN orders. In the wider energy bins between 10�6 and 10�1 MeV,
quadrature orders 10 and above all achieve a similar relative error. This is not true in narrow
energy bins, where higher quadrature orders do tend to have a lower relative error. Moving
to higher energies, we can observe a significant spike in the relative error between 10�1 to
100 MeV for SN order 12. Although this spike does not span several energy bins like those
seen in Figure 4.43a, it is very high when compared to the other relative error bins. As
a result, this single tally bin throws o↵ the tally average FOM results in addition to the
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tally maximum RE FOM, as observed in Table 4.23. In energy bins above this spike, most
quadrature orders produce similar FOMs. The lowest valued energy bin is located in this
high energy region.

Figure 4.44: Relative error ratio (Eq. (4.1)) between CADIS-⌦ and CADIS as a function of
quadrature order for the problem with a steel beam embedded in concrete.

While Figure 4.43 shows the how the relative errors of the tally change with di↵erent
quadrature orders, we have no indication of how CADIS and CADIS-⌦ change in comparison
to one another. Figure 4.44 shows the relative error improvement factor for each quadrature
order. A value below unity indicates that CADIS-⌦ achieved a better relative error than
CADIS for that bin and quadrature order. In this figure we can clearly see the e↵ect that
the problematic energy bins in each method have on the improvement factor. In CADIS
we observed that bins in the 10�3 to 10�1 were problematic for quadrature order 10; this is
reflected in the very low value of IRE for that energy range and quadrature order, as shown in
by the orange line reaching the lowest values of IRE. Conversely, we observed that CADIS-⌦
had a very problematic energy bin between 10�1 and 100 at quadrature order 12. The value
of this IRE is far above the y-limit of Figure 4.43, illustrated with the yellow line.

Figure 4.43 also shows that quadrature order 10 is generally the order in which CADIS-
⌦ outperforms CADIS the most. For this quadrature error, CADIS-⌦ achieves the lowest
error when compared to CADIS. The reasons for this are twofold: first, it is one of the best
performing quadrature sets for CADIS-⌦, which achieves its lowest relative errors in almost
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every energy bin in this quadrature order; second, it is a very poorly performing quadrature
set for CADIS. This synergistic combination results in the best overall quadrature order for
CADIS-⌦.

A region where quadrature order 10 is not the best quadrature order is in energy regions
above 10�1 MeV, whre the higher quadrature orders–like 15, 17 and 20–outperform CADIS
more. In the low (< 10�5 MeV) and high (> 100 MeV) energy regions, CADIS-⌦ obtains
lower relative errors than CADIS for all quadrature orders. In intermediate energy regions,
some spikes occur in regions that indicate a lower relative error is achieved by CADIS.
However, generally CADIS-⌦ achieves lower relative errors than CADIS for most energy bin
and most quadrature orders. Returning again to the relative error figures of 4.43, the spike
in IRE between 10�5 and 10�4 MeV is explained by a relatively low relative error achieved
by CADIS, where in CADIS-⌦ a large spike in the relative error occurs. This is reflected in
the ratio for IRE.

Figure 4.45: Figure of merit improvement factor (Eq. (4.2)) between CADIS-⌦ and CADIS
with changes in quadrature order for the problem with a steel beam embedded in concrete.

Figure 4.45 complements the results to Figure 4.44. Here the FOM improvement factor is
plotted rather than the relative error improvement factor. Because a higher valued FOM is
a better result, values above 100 indicate that CADIS-⌦ outperformed CADIS. On this plot
it is quite clear that for higher energies, CADIS-⌦ consistently outperforms CADIS more in
higher quadrature orders, as observed with IRE.
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Let us return again to the high and low-energy regions of the plot, as explored with
Figure 4.44. In this region it can be observed that for low energies, generally IFOM decreases
with increasing SN order. This behavior reverses at high energies, where the ratio increases
with increasing quadrature order. This may be an e↵ect of anisotropy in each energy group,
as the highest energy has the most anisotropy in the flux. Recall from Section 4.2.4 that
the anisotropy metric was much higher at high energies than it was at low energies. It
is possible that for this more anisotropic energy group, increasing the quadrature order
improves the importance map in the ⌦ methods more, resulting in a better relative error,
and, consequently, a better FOM. This would also explain the complementary behavior
at low energies. Low energies generally have more isotropic behavior, and increasing the
quadrature order would not help to improve anisotropy information in the importance map.
As a result, increasing quadrature order would not help the FOM at low energies.

Despite a higher relative FOM at high energies, in higher quadrature orders CADIS-⌦’s
performance does not generally exceed CADIS’. For quadrature order 20, CADIS-⌦’s FOM
is almost always lower than CADIS. On Figure 4.45, the cooler toned lines which correspond
to higher quadrature orders have lower values than the warmer toned lines. For quadrature
order 5, the relative errors on Figure 4.44 were bookended by higher order quadratures at
middle and low energies. This behavior is not the same in Figure 4.45, where the lowest
quadrature order has a higher relative FOM than any of the quadrature orders above 10.
This means that the time required to solve higher quadrature orders a↵ects the FOM more
negatively than the quadrature order decreases the relative error (and positively a↵ects the
FOM). It could also mean that the relative error improvement changes more for CADIS than
CADIS-⌦ with increasing quadrature order. As a result, the improvement factor at lower
quadrature orders is better for CADIS-⌦ than at higher quadrature orders.

4.3.3 Scattering (PN) Order

Table 4.24 is much like that of Table 4.23, but with di↵ering PN orders than quadrature
orders. The table is split into four regions, the first three corresponding to FOMs calculated
with di↵erent relative errors and the last corresponding to Monte Carlo and hybrid runtimes
for the problem. Each of the three first subsections of the table have di↵erent trends with
PN order, which will be described in the next several paragraphs.

In the tally average relative error subsection of the table one can see that CADIS has a
dip in the FOM for PN order 3; both PN orders 1 and 5 are higher overall. This e↵ect is not
seen in CADIS-⌦, where a decrease in the FOM is observed with increasing PN order. As
a result, for CADIS-⌦, lower PN orders are su�cient for generating biasing parameters, but
for standard CADIS the highest PN order achieves the best tally average FOM. Further, for
every PN order, the tally average FOM is higher for CADIS-⌦ than CADIS.

As with Table 4.23, a dip in CADIS’ FOMs is also observable in the maximum relative
error subsection of the table. However, the dip observable at PN order 3 also exists in the
CADIS-⌦ FOMs. If a user desires to have all tally bins to be below a particular relative
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error, PN order 3 is the worst option for both methods in this problem. For PN order 1
CADIS-⌦ is the better choice, and for PN order 5, CADIS is the better choice.

CADIS CADIS-⌦ analog
PN order MC MChybrid MC MChybrid MC

tally avg
PN 1 1.76e+03 1.74e+03 2.99e+03 2.96e+03

1.39PN 3 671 661 2.97e+03 2.94e+03
PN 5 2.21e+03 2.16e+03 2.45e+03 2.42e+03

max RE
PN 1 7.19 7.09 8.06 7.98

0.0448PN 3 3.75 3.7 6.74 6.66
PN 5 14.8 14.5 8.24 8.12

min RE
PN 1 1.5e+03 1.48e+03 1.33e+03 1.31e+03 –
PN 3 1.43e+03 1.41e+03 1.32e+03 1.31e+03 –
PN 5 1.24e+03 1.22e+03 1.57e+03 1.55e+03 –

time (mins)
PN 1 394 399 2.09e+03 2.11e+03

22.3PN 3 413 419 2.1e+03 2.13e+03
PN 5 559 571 2.55e+03 2.59e+03

Table 4.24: Figure of Merit results for steel beam embedded in concrete, with variations in
PN order. Subdivisions of the table indicate calculations of the FOM using di↵erent relative
errors. The analog case has a single value for each relative error as it is not dependent on
changes in deterministic calculation parameters.

Comparing the FOMs for CADIS and CADIS-⌦ using the minimum relative errors, some
interesting trends are visible. In Table 4.23 we observed that as quadrature order increased,
the minimum relative error FOM generally increased or stayed the same for both CADIS and
CADIS-⌦. This is not the case in Table 4.24. As PN order increases, the minimum relative
error FOM for CADIS decreases, but for CADIS-⌦ it increases. This means that increasing
PN order does not move more particles (and reduce the relative error) in the energy bin with
the lowest relative error in CADIS, but it does in CADIS-⌦. Unlike the maximum relative
error subsection of the table, at low PN order CADIS outperforms CADIS-⌦, and at high
PN orders CADIS-⌦ outperforms CADIS.

As with Table 4.23, Table 4.24 shows that the behavior of the FOMs do not follow
the same trends between di↵erent relative error measurements. Depending on the user
requirements for the method, one may be a better option than the other. For example, in
comparing the FOMs using the maximum relative error, CADIS is better with higher PN

order. With the FOMs using the minimum relative error, CADIS-⌦ is better with higher
PN orders.

Looking at the timing results in the last section of the table, we can see that CADIS-⌦
takes at least five times longer than CADIS to perform a hybrid run. This is similar to
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what was observed for the quadrature order results. However, increasing PN order increased
CADIS Monte Carlo runtimes roughly 40% between PN orders 1 and 5, and increased CADIS-
⌦ runtimes about 22% for the same quadrature orders. While the total amount of time
added to CADIS-⌦ runtimes is longer, it is relatively less than the amount that was added
to CADIS.

(a) Relative errors of CADIS results for di↵ering PN orders.

Figures 4.46a and 4.46b provide additional information on interpreting Table 4.24. Figure
4.46a shows the tally relative error results for each of the PN order CADIS runs, and Figure
4.46b shows the relative error results for CADIS-⌦. In Figure 4.46a the highest relative error
for CADIS’ PN order 1 is the most thermal energy bin, for PN order 3 is the tally bin between
10�2, and for PN order 5 is the resonance region around 10�6. The lowest relative error bin,
however, is the same for all PN orders. This bin is located just below the highest energy
bin. The shifting location of the highest valued relative error energy bin helps to explain the
strange trend of the FOMS in the second region of Table 4.24. Because the relative error
bins become larger in epithermal energy groups at PN order 3, and this shift spans several
energy bins, it also helps to explain the tally average FOM shift to a lower value at PN order
3.
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(b) Relative errors of CADIS-⌦ results for di↵ering PN orders.

Figure 4.46: Relative error results for CADIS and CADIS-⌦ with changes in PN order for
the problem with a steel beam in concrete.

In Figure 4.46b, no significant shift in the relative error happens at PN order 3. However,
we can observe a shifting location of the highest valued relative error. At PN order 1 the
highest valued relative error for CADIS-⌦ is the lowest energy bin. At PN order 3 the highest
relative error bin is the resonance region located near 106 MeV, and at PN order 5 these two
bins appear to have a similar relative error. The highest overall observed relative error occurs
in PN order 3, which is why we see the shift to a lower FOM at PN order 3 for the maximum
relative error subsection of Table 4.24. This shift is not as significant as the several-bin
spanning shift in CADIS, so it does not a↵ect the tally average FOM in CADIS-⌦.

From Figures 4.46b and 4.46a, we can conclude that shifts in the relative error that
dramatically change between PN orders can a↵ect the overall tally convergence. This shift
is not predictable, and may not be observed if combined with a di↵erent set of deterministic
parameters, such as quadrature order 15, where both CADIS and CADIS-⌦ have no spikes
in their relative errors.

Figure 4.47 shows the relative error improvement factor by di↵erent PN orders. This plot
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Figure 4.47: Relative error improvement factor (Eq. (4.1)) between CADIS-⌦ and CADIS
with changes in PN order for the problem with a steel beam embedded in concrete.

complements what was observed in Figure 4.44. Recall that a value below unity indicates
that CADIS-⌦ achieved a better relative error than CADIS for a given energy bin and
quadrature order. First, with the exception of a few energy bins in PN order 5, CADIS-⌦
has better relative errors than CADIS for the majority of PN orders and energy bins. In
general, PN order 3 has the most energy bins that obtain low values of IRE, and PN order
5 has the fewest.

Another interesting feature illustrated in this plot is that di↵erent PN orders perform the
best in distinct energy regions. At low energies PN order 1 achieves the best relative errors,
at intermediate energies PN order 3 achieves the best relative errors, and at high energies
all three perform similarly.

For all three PN orders, the energy bin located near 10�4 MeV is problematic. Returning
again to the relative error plots of Figures 4.46a and 4.46b, this particular energy bin had
a spike for CADIS-⌦, but remained relatively small for CADIS. The consistency in each
method’s performance across all PN orders is reflected in this problematic energy bin.

Figure 4.48 shows the FOM improvement factor with increasing PN order. As with the
quadrature orders, the runtimes of CADIS-⌦ impact the FOMs that it achieves such that
many more energy bins are more in CADIS’ favor than in the relative error plot. However,
many more energy bins are above 100 IFOM in PN order than for quadrature order. As
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Figure 4.48: Figure of merit improvement factor (Eq. (4.2)) between CADIS-⌦ and CADIS
as a function of PN order for the problem with a steel beam embedded in concrete.

with IRE, the shift in performance in di↵erent energy groups changes with PN order. At
low energies, PN order 1 achieves the best FOMs for CADIS-⌦, at intermediate energies PN

order 3, and at high energies all three PN orders have superior performance with CADIS-⌦.
It should be noted that there is no PN order for which CADIS-⌦ obtains better FOMs

than CADIS in all energy bins. Contrast this to the relative error plot, where CADIS-⌦ had
almost universally better relative errors than CADIS. Again this undescores the negative
impact that time has on CADIS-⌦’s FOM.

4.3.4 General Observations

At this point we are interested in which deterministic parameter value a↵ects CADIS-⌦ and
CADIS’ performance more significantly. We have looked at how varying each metric changes
the relative error, IRE, and IFOM , and from that we have observed trends associated with
varying each parameter. However, we have not compared each metric against the other.
Figures 4.49 and 4.50 aid in this comparison. As with PN order and SN order, these plots
show either the relative error or Figure of Merit results for the angle sensitivity study. Unlike
the plots with IRE and IFOM , these figures show how the FOM and relative error change
for a single method. That is, how much does the relative error or the Figure of Merit
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change between the lowest- and highest- valued parameters run for CADIS or CADIS-⌦.
These figures are useful to show how sensitive CADIS and CADIS-⌦ are to PN order and
quadrature order, respectively.

In Figure 4.49, the ratio of the relative error in each tally bin is taken between the lowest
and highest-valued parameter run of the parametric study. For PN order (the purple lines in
the figure) this is calculated with REP

N

1/REP
N

5 and for quadrature order (the green lines in
the figure) it is calculated with RES

N

5/RES
N

20. A ratio above unity means that the relative
error obtained by the higher-valued parameter (PN order 5 or SN order 20) is lower than
that of the lower-valued parameter.

Figure 4.49: Ratio in the relative errors between the lowest and highest variable in the angle
sensitivity study for CADIS and CADIS-⌦.

Figure 4.49 shows that a greater change in the relative error occurs for both CADIS and
CADIS-⌦ from SN order 5 to 20 than it does for PN orders. A notable exception to this is for
CADIS in the energy range from 10�8 to 10�7 MeV, where the relative error improvement
for PN order exceeds any quadrature order line. Returning to the relative error results for
just CADIS, as shown in Figure 4.46a, this energy range has a very high relative error for
PN order 1, especially when compared to the other energy regions nearby. In this energy
range, the relative error drops from 0.015 to .005 from PN order 1 to 3, but the energy bin
immediately adjacent only drops about .005 total. The greater change in the relative error
for this region accounts for the spike we see in Figure 4.49.
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The data in this figure also shows us that increasing PN order for CADIS-⌦ does not
reduce the relative error in the energy range from 10�3 to 100 MeV. CADIS-⌦’s purple line
on this figure is located below unity in that energy region. Generally this line for CADIS-⌦
does not see a huge improvement with increasing PN order. For a problem like this, a low
PN order may be a good enough choice.

CADIS’ results in the same energy region show improvement in the relative error. How-
ever, in many centrally-located energy bins, this improvement is very small. If a tally existed
for a similar problem in these energy ranges, it may be su�cient to use CADIS with a low
PN order as well.

Figure 4.50: Ratio in the figure of merits between the lowest and highest variable in the
angle sensitivity study for CADIS and CADIS-⌦.

In Figure 4.50, the linestyles and colors match those in Figure 4.49. The y-axis of this
figure shows the ratio of the FOMs for the lowest- and highest-valued parameters. The
purple lines are calculated by the ratio of FOMP

N

1/FOMP
N

5; the green lines show the ratio
of FOMS

N

5/FOMS
N

20; the linestyles indicate the method type. In this plot, a low-valued
ratio reflects a higher valued FOM obtained by the finer PN or SN order.

Some features from 4.49 are continued in Figure 4.50. For example, the energy bins
between 10�8 and 10�7 MeV still show a large change for PN order in CADIS. However, the
addition of time to calculate the FOMs a↵ects both methods. In Figure 4.49, we observed
that for both methods, increasing PN order or quadrature order generally decreased the
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relative error. In Figure 4.50, this is not the case. At low energies, all methods have higher
FOMs with increasing parameter resolution. At intermediate energies, only SN order strongly
changes the FOM. At high energies, energy bins for both SN and PN order wildly oscillate
between improved and not improved.

The CADIS lines in Figure 4.50 generally lie at lower values than CADIS-⌦. Conse-
quently, larger changes in the FOM are observable with increasing either PN or SN order.
This is the case for most energy bins, but not above 100 MeV. In this region, CADIS-⌦ and
CADIS shift between energy bins in which method sees a larger change with parameter value
selection.

By inspecting both Figure 4.49 and 4.50, a few common themes appear. First, CADIS
has a larger change in the tally relative error and FOM than CADIS-⌦ for most energy bins.
Second, this general observation does not hold for energy bins greater than 10�1. At these
energy regions, CADIS-⌦ achieves a better relative error with increasing SN order, but not
PN order. Neither CADIS-⌦ or CADIS have a dominant trend in FOM values in this region.
Another observation is that generally SN order has a greater e↵ect on the relative errors and
FOMS for both methods. This is not the case in the high energy region for FOM values,
where both methods are comparable.

4.4 Method Recommendations

The performance of CADIS-⌦ has been characterized and compared against CADIS and a
standard, nonbiased analog Monte Carlo run for a series of problems. Section 4.2 showed
how varying geometric configuration and material composition of various problems with
anisotropy a↵ected the performance of the ⌦ methods. Subsections 4.3.3 and 4.3.2 showed
how varying PN order and quadrature order changed the tally results and tally convergences
for the steel beam problem embedded in concrete. In doing this characterization, we sought
to determine in which problems and with which solver options the ⌦ methods were best
suited. A secondary objective was to determine the sensitivity of the ⌦-methods to changes
in the solver options. With these objectives in mind, we can evaluate the ⌦ methods’
performance based on the study performed in the preceding subsections.

4.4.1 Problem Selection

Section 4.2 revealed that CADIS-⌦ does not outperform CADIS for all problems containing
anisotropy in the flux. Depending on how and where the flux anisotropy was induced in
the problem, CADIS-⌦ had the potential to significantly increase the FOM in Monte Carlo.
These results were not consistent, and are not entirely predictable.

In comparing the single turn and multiple turn labyrinths, it was observed that more
scattering e↵ects decrease the e↵ectiveness of CADIS-⌦. Because more scattering is required
to penetrate the multiple turn labyrinth, the performance of CADIS-⌦ was poorer. In the



CHAPTER 4. CHARACTERIZATION PROBLEMS AND RESULTS 154

single turn labyrinth energy bins that had more isotropy in the flux induced by scattering
also were poorer performing for CADIS-⌦.

To add to this complexity, problems with little- to no- scattering were also di�cult
for CADIS-⌦ to handle. These problems were also problematic for CADIS, as they were
generally comprised of “thin” materials to induce streaming e↵ects. As a result, sampling
events occurred over several centimeters, which also was over several orders of magnitude
in flux change. This resulted in very high relative errors, as observed in the beam facility
problem. This was not as problematic in the therapy room example because the problem
was bounded by 10cm of concrete, which allowed for particle scattering rather than leakage.

Several material variants of the steel beam in concrete problem were run. The results of
this small study confirmed that both CADIS and CADIS-⌦ obtain poorer FOMs with air
than with steel or concrete. In the case of the air variant, the FOMs obtained by CADIS-⌦
were generally lower than CADIS, but the relative errors were also better. For all material
variants of the steel beam problem, CADIS and CADIS-⌦ achieved superior FOMs to the
nonbiased analog, but these were an order of magnitude lower for the air variant.

The rebar-embedded concrete problem showed that for problems with geometric complex-
ity, CADIS-⌦ can also struggle. Because the rebar in this problem was not always directed in
line with the detector tally, particles could more freely move perpendicular to the tally path,
crossing out of importance with a preferential flowpath. As a result, in high energy bins
the tally relative error was very high for both CADIS and CADIS-⌦. However, CADIS-⌦’s
performance was poorer. The FOMs obtained by CADIS-⌦ in this problem were one to two
orders of magnitude smaller than CADIS or the nonbiased analog.

CADIS-⌦ achieved lower relative errors than CADIS for many problems, but often this
was o↵set by a very long runtime. The long runtime impacted the FOM. As a result, even
though CADIS-⌦ achieves a lower relative error for the same particle count, it may be more
advantageous to simply run standard CADIS for longer. In a few instances, the runtime for
CADIS-⌦ is comparable to CADIS. This occurs in the beam and therapy room problems,
for example. Although these problems are not the best for either CADIS or CADIS-⌦, there
is no caveat to using CADIS-⌦ if choosing a hybrid method.

The characterization problems’ variations in material and geometric configuration showed
that there is no distinct behavior for which CADIS-⌦ is universally better. However, in
problem geometries where preferential flowpaths are directed towards the tally detector, and
where materials provide short mean free paths to interaction or resampling sites, CADIS-⌦
is a well-suited method.

4.4.2 Deterministic Solver Choice

The angle-based parametric study provided a number of interesting obervations on the per-
formance of the ⌦ methods. First, the e↵ect of Tdet does not change the FOM with CADIS-⌦
more than CADIS. In Section 4.3.2 the hypothesis that I/O requirements would severely im-
pact the FOM for CADIS-⌦ was shown to not be as impactful as hypothesized. The FOM
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change between FOMMC and FOMhybrid was roughly the same for CADIS as CADIS-⌦
because the CADIS-⌦ runtimes are so much longer than CADIS.

Next, the only consistent region in which CADIS-⌦ outperforms CADIS is in high ener-
gies. For almost all PN orders and all quadrature orders, CADIS-⌦ achieved lower relative
errors and higher FOMs than CADIS. In high energy bins, increasing quadrature order
showed a decrease in IRE, increasing PN order did not show a large change in IRE. In the
same bins, IFOM values above unity were observed for both PN and SN order, but no trends
with changing parameter value were observed.

By including the runtime to calculate the FOM, the comparative performance of CADIS-
⌦ dropped when compared to using the relative error. Several energy bins in CADIS-⌦–for
quadrature orders and PN orders–achieved better FOMs than CADIS. However no PN order
consistently outperformed the other, while low SN orders generally achieved better FOMS
for CADIS-⌦ than CADIS. However, despite the lack of consistent performance for a single
PN order, the raw values obtained with PN order are promising. With PN order there were
more energy bins that had high IFOM values than with quadrature order.

Another observation that can be extended from Section 4.2 is that CADIS-⌦ consistently
biases particles better than CADIS. For the same number of source particles, CADIS-⌦
achieves lower relative error than CADIS for most energy bins with both PN order and
quadrature order. This means that while sampling may be slow, the importance map gener-
ated with the ⌦ flux is generally better at moving particles to the tally region than CADIS.

Based on the results in Section 4.3, a number of recommendations can be made based
on deterministic solver choice. First, the best PN order choice is dependent on the energy
range in which one is tallying. For low energy regions, PN order 1 will give the best FOMs
relative to CADIS, for intermediate energies PN 3 is a better choice, and for high energies
any PN order is satisfactory. In general, because lower PN orders have lower runtimes, these
will get the best results for CADIS-⌦ the fastest, and have comparatively the best relative
errors and FOMs against CADIS. Next, the best SN order choice is

If one has to choose between varying PN order and SN order to improve the importance
map for their method, varying SN order will have a greater impact. This is the case for
using either CADIS or CADIS-⌦. However, both methods have a turnarount point at which
increasing SN order does not improve the relative error enough to o↵set the time increase
of the method. For CADIS-⌦, this occurs in bins above SN 15, and for CADIS it occurs in
bins aboe SN 12. For this type of problem, and using all energy bins in the tally, CADIS-⌦
will obtain the best results with a lower PN order and intermediate SN orders.

4.4.3 Lessons Learned

The characterization problems that were run were heavily biased towards low-density stream-
ing to induce anisotropy in the flux. This subset of problems, though highly anisotropic,
are not the best for a method so dependent on weight-window type biasing, because particle
streaming allowed for particles to cross several orders of magnitude in the flux before re-
sampling. This meant that in a high-importance region a particle may split many thousands
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of times in a new splitting event. Unfortunately, the ⌦-methods are not immune to this issue
and so su↵ered the same e↵ects as CADIS, even with positive e↵ects like the reduction of ray
e↵ects. Further, with the strong dependence on angle, the ⌦-fluxes may have exacerbated
this streaming-sampling e↵ect in regions with strong angular dependence around the detec-
tor. In a problem like the single turn labyrinth, where the ⌦-flux generated a strong line of
importance between the exit of the labyrinth and the detector and drastically dropped the
importance behind the detector, a particle has much more opportunity to cross several orders
of magnitude of importance than it does in CADIS. This is likely what caused CADIS-⌦ to
take longer in Monte Carlo transport than CADIS in many of the characterization problems.

It should also be noted that while the angle-dependent parametric study revealed how
PN order and quadrature order may a↵ect a problem’s results, the best parameter choices
for this problem are by no means a prescriptive solution for other problems. Section 4.2
showed how di↵erent the characterization problems’ results were, depending on the source
definition, the material composition of the problem, and the geometric configuration of the
problem. Using the deterministic parameter choices that appear the best for the steel beam
in concrete may not be the best for, say, a multi-turn labyrinth. From this study we have
a good starting point from which to further characterize the method for other application
problems.


