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Chapter 3

Methodology

The objective of this work is to develop a method that, like CADIS and FW-CADIS, auto-
matically generates variance reduction parameters for fixed-source, deep-penetration radia-
tion transport problems. In general, the variance reduction parameters generated by CADIS
and FW-CADIS are not su�cient for problems that are strongly anisotropic with respect to
the flux. This method will extend existing methods to generate importance maps–that in
turn generate variance reduction parameters–that are informed by angle to remedy this issue.
The first section in this chapter describes the mathematical foundation of this new method.
A discussion on how the method’s performance will be quantified follows. Finally, a descrip-
tion of the software being used and how the method is added to this software concludes this
chapter.

3.1 Theory: Angle-Informed Importance Maps for
CADIS and FW-CADIS

There exist methods to generate variance reduction parameters for deep penetration radi-
ation transport problems with strong anisotropy in the flux. These methods have shown
to have varying success, and may not be fully automated. The solution proposed in this
dissertation is a formulation that we have named the ⌦-CADIS-methods. This section will
commence with a brief discussion of the foundational research on which the ⌦-CADIS-
methods are built. That discussion serves as a primer for the subsequent section, which is
an introduction to the ⌦-CADIS-methods and a discussion on how they di↵er from their
predecessors.

3.1.1 Previous Work

As discussed in Sections 2.3.1 through 2.5, the existing gold standard for automatically gen-
erating variance reduction parameters for deep penetration fixed-source radiation transport
problems are CADIS and FW-CADIS. Both of these methods are very e↵ective at generating
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variance reduction parameters for local and global solutions, respectively. However, CADIS
and FW-CADIS have only been implemented to perform variance reduction in space and
energy, not angle. As a result, solutions for problems with strong anisotropy in the flux
are not always optimized with these methods, resulting in slow convergence times and low
FOM values. Problems with strong anisotropies in the flux require more than just space-
and energy- variance reduction techniques. A number of angle-informed variance reduction
methods have been investigated, most notably AVATAR, LIFT, and a modified version of
CADIS using AVATAR-type angular parameters.

LIFT, AVATAR, and Simple Angular CADIS all showed that by including angular infor-
mation into Monte Carlo variance reduction parameters the FOM can be improved. However,
none of these methods used the actual angular flux to calculate the variance reduction pa-
rameters for the problem they were optimizing. Without explicitly using the angular flux
solutions they were limited in which types of problems they were applicable, because some
assumption of the degree of anisotropy of the flux was made. Further, LIFT and Simple
Angular CADIS showed that by including substantial angular biasing in the weight windows
in problems where the approximation to the angular flux is not su�cient, the FOM can
decrease not unsubstantially, defeating the purpose of using these methods.

3.1.2 The ⌦ Methods

The foundation of the ⌦-methods is built upon CADIS and FW-CADIS. As with both
methods, the ⌦-methods will use a version of the adjoint scalar flux to consistently bias a
Monte Carlo problem with the intention of reducing the variance. In Section 2.2.1 the concept
of importance was introduced. Notably, it was shown that the adjoint flux is a good marker
for the likelihood of particles to contribute to a tally, which is the particle’s importance.
It was also shown that the product of the forward and adjoint fluxes generates a pseudo-
particle flux called the contributon flux, where contributons are “importance particles”.
These importance particles can be used to show preferential flow paths from a source to a
tally or desired location.

By using a version of the adjoint scalar flux that has been formulated with the contrib-
uton flux, the direction of particle flow will be incorporated into the importance map and,
consequently, the variance reduction parameters. By using this variant of the adjoint scalar
flux, the method, like traditional CADIS, will show increasing importance as the particles
travel near the adjoint source. However, because this variant of the adjoint flux incorpo-
rates directionality of the particle flow, not all regions near the adjoint source are equally
important. In this way, the adjusted flux incorporates features from both the adjoint- and
contributon- fluxes.

The adjusted adjoint scalar flux quantity, or the ⌦-adjoint scalar flux, is

�†
⌦(~r, E) =

R
⌦  

†(~r, E, ⌦̂) (~r, E, ⌦̂)d⌦̂
R
⌦  (~r, E, ⌦̂)d⌦̂

. (3.1)
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The ⌦-flux is a hybridization of the adjoint scalar flux and the contributon flux. It is both
a normalized contributon flux and a forward-weighted adjoint flux. As a result, it should
inherit some of the advantages of each of the traditional adjoint and the contributon fluxes.
Because it maintains dimensionality of the traditional adjoint scalar flux, it can be used in
place of the standard adjoint scalar flux in both CADIS and FW-CADIS variance reduction
parameter generation. This means that the method can capitalize on existing infrastructure
used to generate variance reduction parameters for CADIS and FW-CADIS, and only the
software handling the transport and flux-generation requires modification.

3.1.2.1 CADIS-⌦

As with CADIS, CADIS-⌦ consistently biases a problem’s source and particle weights ac-
cording to their importance. However, CADIS-⌦ uses the ⌦-adjoint scalar flux rather than
the standard adjoint scalar flux to generate the biased source distribution, weight windows,
and the particle birth weights. Furthermore, because �†

⌦ is used to calculate these values in
CADIS-⌦, the consistent-biasing hallmark for which CADIS is known is maintained. The
adjusted formulation of CADIS using the ⌦ fluxes is given by Eqs. (3.2). The biased source
distribution used by CADIS-⌦ is formulated just as it is in CADIS, except the adjusted
adjoint fluxes are used:

q̂⌦ =
�†
⌦(~r, E)q(~r, E)

RR
�†
⌦(~r, E)q(~r, E)dEd~r

=
�†
⌦(~r, E)q(~r, E)

R⌦
.

(3.2a)

The starting weights of the particles sampled from the biased source distribution, q̂ are given
by

w0,⌦ =
q

q̂⌦

=
R⌦

�†
⌦(~r, E)

,
(3.2b)

and the new target weights for the particle are

ŵ⌦ =
R⌦

�†
⌦(~r, E)

. (3.2c)

3.1.2.2 FW-CADIS-⌦

FW-CADIS di↵ers from CADIS in that it requires a forward deterministic calculation to
generate q†, which is used as the source distribution in the adjoint deterministic problem
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(recall that CADIS sets q† = �d). Depending on the type of global response desired, FW-
CADIS runs a deterministic forward calculation to approximate the global response in the
problem. The inverse of these responses is then used to generate the biased adjoint source
distribution for the adjoint deterministic run. Therefore, the behavior of FW-CADIS-⌦ in
the forward biasing portion of the calculation will remain unchanged from FW-CADIS. The
generalized form for the adjoint source definition is given by the fraction of the response in
a region of phase space, P , over the total response in the problem, or

q†⌦(P ) = q†(P ) =
�d(P )

R
.

When applied to the spatially-dependent global dose,
R
�(~r, E)�d(~r, E)dE, the adjoint source

will be

q†⌦(~r, E) = q†(~r, E) =
�d(~r, E)R

�d(~r, E) (~r, E, )dE
.

The adjoint source for the spatially-dependent total flux
R
�(~r, E)dE is

q†⌦(~r) = q†(~r) =
1R

�(~r, E)dE
.

The adjoint source for the energy- and spatially-dependent flux �(~r, E) is

q†⌦(~r, E) = q†(~r, E) =
1

�(~r, E)
.

One advantage of FW-CADIS-⌦ is that, from a transport perspective, the ⌦-method is
no more expensive than standard FW-CADIS. Because both versions require a forward and
adjoint deterministic calculation, an extra transport step is not required as it is for CADIS-
⌦. This is attractive, but the nature of FW-CADIS might not be the most well-suited for
the ⌦-methods. Because FW-CADIS attempts to evenly distribute particles throughout
the problem using the forward-biased adjoint fluxes, the additional forward normalization
with the ⌦-methods will likely skew the particle distribution in the problem in the forward
direction, and it may place too great of importance on the forward-moving particles in
generating the variance reduction parameters.

3.2 Computational Success Metrics

3.2.1 Anisotropy Quantification

As the ⌦-methods are analyzed, it is important to determine the types of problems in which
the methods are successful. In addition to describing the physics that induce anisotropy in
the flux, quantifying the degree of anisotropy of the problem is useful in characterizing the
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method. In this section, a number of methods by which the anisotropy can be quantified in
these problems are proposed. A brief description of how these methods capture anisotropy
in the problem is also included. While each metric proposes an avenue by which the problem
can be analyzed, there are certainly other methods that one may propose. The methods
described in the following subsections are proposed because they use data generated from
the existing method. The degree to which they impose a computational burden will be
addressed in their analysis.

3.2.1.1 The Scalar Contributon Ratio

The hybrid methods software that will be used for this project is ADVANTG, developed at
ORNL. Section 3.3 explains how the software used interacts with other pieces of software and
how they were modified to execute this method. The standard release of ADVANTG provides
the contributon flux as an output option, which can then be used to analyze problem physics
by a user. If this option is selected as an output, a SILO file containing the contributon
fluxes for each discretized cell in space and energy is created. This is useful for problem
analysis as the user may see preferential streaming paths for particles in the problem using
this metric. The contributon flux generated in this process is given by the product of the
scalar adjoint and forward fluxes (Eq. (3.4)).

As mentioned in Section 2.2.3, the contributon flux can be calculated by using the prod-
uct of the forward and adjoint fluxes. In standard software packages that calculate the
contributon flux, like ADVANTG, the scalar contributon flux is calculated by the product
of the scalar adjoint and forward fluxes. This can be written as

�c(~r, E) = �†(~r, E)�(~r, E). (3.4)

A more precise calculation of the contributon flux could be generated from integrating the
angular contributon flux over all angle, as

�c(~r, E) =

Z

⌦

 c(~r, E, ⌦̂)d⌦̂

=

Z

⌦

 †(~r, E, ⌦̂) (~r, E, ⌦̂)d⌦̂.
(3.5)

Both Eqs. (3.4) and (3.5) calculate the contributon flux as a function of space and energy,
but the di↵erences in their calculation is addressed in their notation, namely using �c or �c.
The standard release of ADVANTG only has access to the scalar fluxes, so Eq. (3.5) is not
an accessible option for a user. Because the ⌦ calculations require full angular flux map, the
scalar contributon flux can be calculated with the latter formulation, rather than the former
in the modified version developed to support this work.

The first measure of anisotropy quantification that will be evaluated is the ratio between
these two quantities, as described by Eq. (3.6). The ratio between these two values is
evaluated for every cell, x, y, z, and energy group, Eg. If the adjoint or forward angular
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flux is significantly peaked in ⌦, this will result in a deviation between �c and �c, because
there will be a multiplicative e↵ect in the angular flux captured in �c but not �c. The more
isotropic the flux in ~r and E, the closer these values will be and the quantity will approach
unity.

M1 =
�c

�c

����
x,y,z,E

g

(3.6)

3.2.1.2 The Ratio of Adjoint Fluxes

As discussed in previous sections, the ⌦-methods use the ⌦-scalar flux in place of the standard
adjoint scalar flux. Therefore the ratio between these two quantities would also provide a
useful metric for comparing which regions have significantly di↵ering bias parameters in
standard-adjoint and ⌦-adjoint situations. This metric will deviate from unity if the forward
flux is anisotropic. This metric is calculated for every cell and every energy group in the
problem, as shown in Eq. (3.7).

M2 =
�†
⌦

�†

����
x,y,z,E

g

(3.7)

Metrics one and two both reasonably appear to compute the anisotropy in the flux using
versions of the contributon and adjoint fluxes, respectively. However, by expanding the
⌦-adjoint scalar flux in metric two,

M2 =
�†
⌦

�†

����
x,y,z,E

g

=

R
⌦  

†(⌦̂) (⌦̂)d⌦̂
R
⌦  (⌦̂)d⌦̂

1

�†

����
x,y,z,E

g

,

integrating the forward angular flux over all angle,

=

R
⌦  

†(⌦̂) (⌦̂)d⌦̂

�

1

�†

����
x,y,z,E

g

,
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and rearranging the terms,

=

R
⌦  

†(⌦̂) (⌦̂)d⌦̂

��†

����
x,y,z,E

g

=
�c

�c

����
x,y,z,E

g

=
1

M1

����
x,y,z,E

g

,

it becomes evident that the ratio of adjoint fluxes is the inverse of the scalar contributon ratio.
As a result, metric one will not be used in the analyses of the characterization problems.

3.2.1.3 The Maximum to Average Flux Ratio

An alternative metric to quantify anisotropy is to calculate the ratio between the maximum
and average angular contributon flux in each ~r, E voxel. The higher this quantity, the more
peaked the contributon flux is in ⌦. Note that while using the ⌦-flux would seem like the
natural choice, no angular information is directly accessible once the ⌦ scalar flux has been
calculated. One can compare the standard adjoint scalar flux and the ⌦-adjoint scalar flux
and infer how anisotropic the flux in the cell might be, but due to the normalization that
occurs in Eq. (3.1), the variation of angular ⌦ fluxes throughout ⌦ for a cell in x, y, z, Eg is
not calculated. As such, the contributon flux must be relied upon as a next-best evaluator
of that metric:

M3 =
 c
Max

 c
Avg

����
x,y,z,E

g

. (3.8)

While Eq. (3.8) directly measures the anisotropy in the problem using the angular
contributon fluxes, it doesn’t compare the di↵erence between the fluxes used in the ⌦-
and the standard adjoint methods. Metric three can be reformulated to incorporate this
information using

M4 =

 c

Max

 c

Avg

 †
Max

 †
Avg

�����
x,y,z,E

g

=
M3

 †
Max

 †
Avg

�����
x,y,z,E

g

,

(3.9)

as a measure between the anisotropies of the standard and contributon fluxes. This equa-
tion is a logical progression from metric two and metric three. This metric contains more
information on how perturbed the contributon flux is when compared to the original adjoint
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flux that is normally used in CADIS and FW-CADIS. In the case of a strongly anisotropic
forward flux, the forward flux would significantly change the distribution of the contributon
fluxes in a cell, but it would not a↵ect the flux distribution of the standard adjoint angu-
lar fluxes. By comparing the anisotropy in the contributon fluxes to those in the standard
adjoint, the perturbation of the ⌦ flux by the forward flux in the cell can be evaluated.
In regions where the forward flux is not anisotropic, then the contributon anisotropy ratio
should be approximately the same as the standard adjoint anisotropy ratio.

Further, because the contributon flux incorporates directionality of the forward and ad-
joint fluxes, the maximum to average ratio of the contributon flux can di↵er from the adjoint
flux. In regions where the adjoint angular flux and the forward angular flux are traveling
in the same direction, the contributon ratio should be greater than the adjoint ratio, and
this metric will be greater than one. In regions where they are travelling in opposite or
perpendicular directions, the contributon flux will evaluate to a more isotropic state, and
metric four will be less than unity. This metric provides substantially more information
than metric two because it compares the behavior of the directional contributon and adjoint
fluxes, rather than comparing the overall behavior of the flux in the cell.

Both Eqs. (3.8) and (3.9) compare the maximum angular flux in a cell to the average
flux in the same cell. Because the average angular flux is the normalization factor, the
maximum flux in the cell is compared to some relative measure of the total flux behavior in
that cell. If, for example, the flux has several directional peaks, the average will reflect that.
The fact that Eq. (3.9) contains information on the global behavior in the contributon and
average cell, the directionality of the fluxes, and the degree of isotropy of the forward flux is
attractive. However, this is also a fairly computationally expensive calculation and it may
not be worth the computational cost when compared to metrics two and three.

3.2.1.4 The Maximum to Minimum Flux Ratio

An additional metric to quantify anisotropy in the contributon flux distribution is to calcu-
late the ratio between the maximum and minimum angular fluxes for each region of x, y, z, Eg

phase-space, as described in metric five, or Eq. (3.10). This quantity incorporates informa-
tion about the behavior of the local maximum relative to the local minimum angular flux in
each cell.

M5 =
 c
Max

 c
Min

����
x,y,z,E

g

(3.10)

This metric may be more appropriate to describe the anisotropy of the flux in cells where
the distribution of flux values in the cell are not well reflected by the average flux in the cell.
As with metric three (Eq. (3.8)), metric five (Eq. (3.10)) only quantifies the anisotropy of
the contributon flux in the cell. There is no comparison or normalization to compare the
anisotropy with respect to another method. To compare it to the anisotropy of the flux in
the standard adjoint problem, a ratio similar to that of Eq. (3.9) may be formulated:
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M6 =

 c

Max

 c

Min

 †
Max

 †
Min

�����
x,y,z,E

g

=
M5

 †
Max

 †
Min

�����
x,y,z,E

g

.

(3.11)

As with Eq. (3.9), Eq. (3.11) uses a ratio from the standard adjoint formulation to
normalize the anisotropy of the contributon flux. Equation (3.11) is consistent with Eq.
(3.10) and normalizes using the maximum to minimum ratio of angular fluxes of the adjoint.
These two metrics will show the relative behavior of the flux in the cell, but because neither
incorporates information about the total flux behavior within the cell, they may be very
sensitive to the variance of the angular flux within the cell. Using the ratio of both the
contributon and adjoint fluxes may help to smooth this if the variance of flux distributions
within the contributon and standard adjoint is similar in a particular cell. However, if these
two di↵er significantly, then metric six (Eq. (3.11)) may have a synergistic e↵ect and will
over-emphasize the variance when quantifying the anisotropy of the cell.

Metrics one through six quantify anisotropy in the problem solved by using di↵erent pa-
rameters to capture the problem physics. These metrics will be compared to one another to
determine which is the most consistently correlated with predicting the ⌦-method’s success.
A user may want to know if the ⌦-method will e↵ectively generate variance reduction pa-
rameters for a Monte Carlo simulation, and this may be a prescriptive solution for that issue.
However, all of these metrics do require full angular flux solutions for both the forward- and
adjoint- problem, so some computational burden will be required. The analysis of using these
metrics will include some information of benefit to burden, which likely will come at the cost
of time. That said, because the Monte Carlo solution is more computationally demanding,
generating these metrics from the deterministic solution should be substantially less of an
obstacle.

3.2.2 Figure of Merit

The FOM is a commonly used metric to measure Monte Carlo runtimes and to gauge the
e↵ectiveness of various hybrid methods. As discussed in Section 2.1, the FOM relates the
relative error of a solution to the time required to achieve that variance. This was introduced
in Eq. (2.20) as:

FOM =
1

R2T
,

where T is the time and R2 is the square of the relative error.
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3.2.2.1 Relative Error

In tallies with multiple regions and/or energy bins, the FOM is usually calculated from the
tally average relative error, or Ravg. This value is meaningful as it reflects the overall tally
behavior. However, it is often desirable that all portions of the tally lie below a desired
relative error threshold. A region with very low particle contribution may have a much
higher relative error than the tally average, and may also converge much slower to a desired
relative error. This results in a substantially di↵erent FOM than the tally average. In the
results presented in later chapters, both relative errors will be used to calculate di↵erent
FOMs, respectively

FOMavg =
1

R2
avgT

, (3.12a)

and

FOMmax =
1

R2
maxT

. (3.12b)

In addition to reporting both FOMs for the entire problem, comparing the distribution of
values of the relative error for problems will be a useful metric in method characterization. If,
for example, FW-CADIS acquires desirable results in a calculation, then the problem should
have a relatively even uncertainty distribution for all cells. Comparing the distribution of
relative errors between the analog case and the hybrid case reveals whether the method is
e↵ectively generating variance reduction parameters for the entire problem or if it is more
e↵ective in particular regions.

3.2.2.2 Timing

The previous section described two di↵erent means by which the FOM could be calculated
using di↵erent relative errors. The question that one must now consider is: what time should
be used to calculate the FOM? In an analog Monte Carlo simulation, this time is the runtime
of the Monte Carlo simulation, T = TMC . In a hybrid method, one could choose either

THybrid = TMC + TDeterministic, (3.13)

or
THybrid = TMC . (3.14)

The FOM should remain a constant–with the exception of very early on in an MC cal-
culation where statistics are very poor–for a problem. The issue with using Eq. (3.13) to
calculate the FOM is that the deterministic runtime does not change the relative error of
the Monte Carlo simulation. Thus, the FOM is not a constant throughout the Monte Carlo
simulation when using Eq. (3.13) as the time. However, it would be disingenuous to not
include the deterministic runtime into reports for the hybrid method, as the total compu-
tational time required to achieve some desired relative error is ultimately what the user is
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seeking. As such, two reports of the FOM are included with the results for each simulation:

FOMMC =
1

R2TMC
, (3.15a)

and

FOMHybrid =
1

R2(TMC + TDeterministc)
. (3.15b)

Note that the deterministic time used in Eq. (3.15b) is the time to run the transport and
generate source biasing and weight window values for each problem. It will not include the
time used to quantify the anisotropy as outlined in Section 3.2.1, as those parameters will
be computationally demanding but not normally included in a hybrid method computation.

In this section, four di↵erent equations to calculate the FOM were presented: two using
di↵erent relative errors, and two using di↵erent quantities for time. In analyzing the method,
all four will be presented: FOMMC,avg, FOMMC,max, FOMDet,avg, and FOMDet,max. Further,
the improvement in the FOM for each problem will be reported as those values normalized
by FOManalog,avg for the two FOMs calculated with the tally average relative error and
FOManalog,max for the FOMs calculated with the tally maximum relative error. The success
of the ⌦-method will depend on its ability to improve each one of these FOM values.

3.3 Software

In this section, the software in which the methods presented in Section 3.1.2 are implemented
is described. A brief summary of each piece of software and what was added in each is
discussed. While the details of the inner-workings of the software will not be described here,
both pieces of software have rich documentation and user guides which an interested reader
may reference.

3.3.1 Denovo

Denovo SN is a three-dimensional discrete ordinates transport solver developed at Oak Ridge
National Laboratory [62]. Denovo is a module in the larger Exnihilo massively-parallel ra-
diation trasnsport code suite. There exist several other modules in Exnihilo. In addition
to Denovo, the most pertinent package being Omnibus, a frontend pre- and post-processing
module. The ⌦-fluxes are generated by running two independent (a forward and an ad-
joint) determinstic solves in Denovo. The setup and generation of each simulation input is
automated through ADVANTG (see Section 3.3.2). After the calculation has reached the
desired convergence criteria, the full angular flux maps for the forward and adjoint solves
are saved to an HDF5 [72] file. Denovo was modified to output the full angular flux maps
for a simulation. The ⌦-fluxes are then generated by passing the angular flux maps through
the postprocessing module in Omnibus. Using this module, the integration described in Eq.
(3.1) is performed, the scalar ⌦-fluxes are saved to a SILO file, and the scalar fluxes are
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passed to ADVANTG for variance reduction parameter generation. Appendix A.1 contains
the code added to Omnibus to perform this calculation.

3.3.2 ADVANTG

ADVANTG [70] is a software package originally designed to automatically generate vari-
ance reduction parameters for the Monte Carlo radiation transport solver MCNP [9] using
the CADIS and FW-CADIS methods. For this project, the ADVANTG functionality was
extended to process the ⌦-fluxes provided by Denovo through Omnibus and to generate
variance reduction parameters for CADIS and FW-CADIS using said fluxes. In addition
to the modifications required to perform CADIS and FW-CADIS, ADVANTG was further
modified to generate anisotropy quantification metrics and a modified version of the scalar
contributon flux, both of which were summarized in Section 3.2.1. The piece of code used to
reroute the ⌦-fluxes through CADIS and FW-CADIS as well as to generate the anisotropy
metrics in ADVANTG is included in Appendix A.2.

Summary

In summary, this chapter presented the novel theory behind the ⌦-methods; the metrics
by which the ⌦-methods will be compared with existing hybrid methods; and the software
that was modified to implement the ⌦-methods into an existing codebase. Two variants of
the ⌦-methods were presented: CADIS-⌦ and FW-CADIS-⌦, which are referred to together
as FW/CADIS-⌦. CADIS-⌦ is a modification of CADIS, and is designed to generate VR
parameters for local solutions in problems with strong anisotropy. FW-CADIS-⌦ is a mod-
ification of FW-CADIS, and is designed for generating VR parameters for global solutions
in problems with strong anisotropy.

Both CADIS-⌦ and FW-CADIS-⌦ are implemented in well-used, well-documented, massively-
parallel, state-of-the-art radiation transport and hybrid methods software. The radiation
transport code suite Exnihilo is modified to generate the ⌦-fluxes. The hybrid methods
package ADVANTG is modified to generate VR parameters for the ⌦-methods using the
⌦-fluxes.

To understand the performance of the ⌦-methods and compare it consistently to existing
methods, several performance metrics were proposed. First, a few variants of the FOM were
described. They include: FOMMC,avg, FOMMC,max, FOMhybrid,avg, FOMhybrid,avg. Together,
they provide an overall picture of the performance of the ⌦-method’s performance with
respect to relative error and time, rather than of a single criteria. Because anisotropy has
the ability to a↵ect energy groups di↵erently, resulting in di↵erent relative errors achieved
in di↵erent energy bins, separating out di↵erent FOMs helps to isolate interesting behavior
in the methods.

The ⌦-methods are designed to work in problems with strong anisotropies in the flux. As
a result, several anisotropy metrics with which to investigate flux anisotropy were proposed.
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Using these metrics and comparing them to the relative errors or FOMs in each tally region,
we can try to understand the e↵ect that anisotropy has on the ⌦-method performance. Each
metric quantifies the anisotropy in cells di↵erently, so each has the potential to capture
di↵erent information. Denovo was modified to output angular fluxes to generate the ⌦-flux
for the ⌦-methods. As a result, the anisotropy metrics use data generated from the existing
⌦-method calculation.

Using the methodology described in this chapter, the ⌦-methods’ performance can be
fully characterized. Further, the characterization presented in this chapter has been extended
from standard FOM performance metrics to include anisotropy quantification. By imple-
menting the ⌦-methods into production-level software, it is accessible to any user beyond
the author. The generation of the anisotropy metrics is also incorporated into the codebase,
meaning that any user could feasibly perform an investigation of the ⌦-performance con-
sistent with what is proposed herein. The use of the various FOMs and of the aniostropy
metrics helps the understanding of the ⌦-method performance as a function of time, error,
and anisotropy.


