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Chapter 2

Literature Review

The following literature review aims to contextualize the work described in this dissertation
within the realm of hybrid methods for deep-penetration neutron transport. In doing so, the
pertinent theoretical information that is relevant to this topic is described. This description
is supplemented by a discussion of the various e↵orts to implement these methods for applied
problems, and the degree to which those e↵orts succeeded. First, a brief overview of variance
reduction for Monte Carlo radiation transport is described in Section 2.1. Then, Section 2.1.3
expands on the various e↵orts to automate variance reduction techniques in Monte Carlo.
Section 2.2.1 follows with an introduction of the concept of importance and how that relates
to variance reduction. This section also focuses specifically on how the adjoint solution of
the neutron transport equation relates to importance.

From this point, the chapter transitions from theory into existing implementations of
variance reduction techniques used in modern software in the nuclear engineering commu-
nity. Beginning in Section 2.3.1, a description of the consistent, adjoint-driven importance
sampling method, or CADIS, which has been optimized for variance reduction of local so-
lutions is presented. Next, Section 2.4 discusses the methods implemented to reduce the
variance for global solutions. This discussion includes a description of the forward-weighted
CADIS (FW-CADIS) method. The last section, 2.5, details the e↵orts to incorporate an-
gular information into variance reduction methods for Monte Carlo. Sections 2.3.1-2.5 are
each concluded with a description of the various software in which these methods have been
implemented and the degree to which they improved the variance reduction for their target
applications.

2.1 Monte Carlo Variance Reduction

Monte Carlo methods for radiation transport are used in the nuclear engineering commu-
nity for a wide spectrum of application problems. Monte Carlo methods aim to emulate
the transport of a particle from birth, through physical interaction, to death by randomly
sampling the probabilities of physics that the particle could encounter, e.g. particle produc-
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tion, elastic and inelastic scattering, absorption, and so forth. This process of transporting a
single particle is repeated many times, to simulate the transport of many particles through-
out the problem. When the user achieves a su�cient number of samples–or particles–to
reach the desired statistical precision for the region of interest, the simulation is complete.
However, this naive approach to simulating each particle–disregarding whether it is likely to
contribute to the tallied result–can be extraordinarily computationally ine�cient depending
on the problem. A code could waste time simulating millions of “unusable” particles and still
not reach the desired statistical precision for the tally. Variance reduction techniques were
developed to address this issue. In general, these techniques bias the Monte Carlo transport
to more e↵ectively contribute to a particular result, while not fundamentally changing the
nature of the problem being solved.

2.1.1 Statistical Background

Variance reduction techniques are rooted in statistics, so we begin our discussion of variance
reduction techniques with a brief primer on the statistical background relevant to Monte
Carlo radiation transport. Sections 2.1.1.1 through 2.1.1.3 are summarized from [7] and
[8]. Monte Carlo methods transport many randomly sampled particles, and when those
particles reach a region of interest, they are scored in a tally. The statistical precision of the
tally will reflect the total number of particles that were sampled in a chosen region or at a
chosen surface. The reliability of the answer obtained in this region is then dependent on
the quantity and the history of the particles sampled.

2.1.1.1 Population Statistics

In radiation transport, one desires to estimate some response in phase-space. This response
is the average behavior of the physical interactions in some di↵erential phase-space in energy,
space, and time. If the probability density function, f(x), for the response is known exactly,
then the response in dx can be calculated exactly by the true mean, or

x̄ =

Z 1

�1
xf(x)dx. (2.1)

Rarely is f(x) known exactly, so instead it is sampled. Using N randomly sampled particles,
the estimate of the true mean value is given as

x̂ =

PN
i=1 xi

N
, (2.2)

where xi is the ith event. x̂ is the sample mean, or the estimated value of x̄ based on the N
number of samples that were used to calculate x̂. As N ! 1, x̂ will ! x̄, which is given by
the Strong Law of Large Numbers [8]. x̂ in itself is a useful measure, but determining the
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spread of values about x̂ is also an important measure. This is called the variance. The true
variance of the distribution is

�2
�
x
�
= x̄2 � x̄2, (2.3)

and the standard deviation is the square root of the variance

�
�
x
�
=
�
x̄2 � x̄2

�1/2
. (2.4)

The variance of the sampled distribution di↵ers, as a finite number of samples are used to
calculate x̄ and �. The sample variance is defined by:

S2 =
NX

i=1

(xi � x̂)2

N � 1
⇠= bx2 � x̂2, (2.5)

where

bx2 =
1

N

NX

i=1

x2
i , (2.6)

and the sample standard deviation is given by

S =
� bx2 � x̂2

�(1/2)
. (2.7)

For (2.5) to hold true, the number of N samples must be large. S2 is the sample estimate
of the true variance, �2. The variance of the estimate of the mean value about x̄ is:

S2
x̂ =

S2

N
. (2.8)

From (2.8), one can see the relationship between the sample standard deviation and the
standard error of x̂ about x̄ is

Sx̂ =

r
S2

N
=

Sp
N
. (2.9)

Sx̂ is the standard error of the estimate of the sample mean. The relative error normalizes
the standard error by the estimate of the mean

R =
Sx̂

x̂
. (2.10)

As a result, S, R, and N follow the relationship

S2 / R2 / 1

N
. (2.11)
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2.1.1.2 The Central Limit Theorem

Suppose x̂ is calculated from several independent random particles to estimate x̄. At what
point does one conclude that x̂ su�ciently reflects x̄? The central limit theorem (CLT) [7,
8] is a very powerful supplement to the quantities described in Section 2.1.1.1. The CLT
states that for large N, x̂ will have a limiting distribution fN(x̂), and that distribution will
be a normal distribution

fN
�
x̂
�
⇡ 1p

2⇡�(x̂)
exp

"
�
�
x̂� x̄

�2

2�2(x̂)

#
, N ! 1. (2.12)

The standard deviation of x̂ can be related to the standard deviation of the samples by

�(x̂) =
�(x)p
N

. (2.13)

Using the definition from Eq. (2.13) in Eq. (2.12) results in

fN
�
x̂
�
⇡
r

N

2 ⇤ ⇡
1

�(x)
exp

"
�N

�
x̂� x̄

�2

2�2(x)

#
, N ! 1. (2.14)

This allows us to use known values for x̂ and an approximation of �(x)–using S–to determine
the probability density function of the sample means fN(x̂). Because fN(x̂) is normally
distributed, we can find the probability that x̂ lies in x̄± ✏ with

P
�
x̄� " < x̂  x̄+ "

 
=

Z x̄+"

x̄�"

fN
�
x̂
�
dx̂. (2.15)

Placing our definition for the distribution of x̂, which is fN(x̂), into Eq. (2.15), changing the
limits of integration, and changing the variables such that

t =
p

N/2
⇥
(x̂� x̄)/�(x)

⇤
,

this becomes

P
�
x̄� " < x̂  x̄+ "

 
=

2p
⇡

Z (
p

N/2)("/�(x))

0

e�t2dt . (2.16)

Recalling the definition of the error function, Eq. (2.16) becomes

P
�
x̄� " < x̂  x̄+ "

 
= erf

hrN

2

"

�(x)

i
. (2.17)

Then, using the calculated estimation for �(x) (S), and also recalling that Sx̂ = S/
p
N (Eq.

(2.9)), the error function reduces to a function of " and Sx̂, or:

erf
hrN

2

"

�(x)

i
= erf

hr1

2

"

Sx̂

i
. (2.18)
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Should " be chosen to be a function of Sx̂, the error function reduces further and becomes
merely an evaluation as multiples (M) of Sx̂ and

p
1/2. For the first few multiples of the

standard error, this is evaluated as

P
�
x̄�MSx̂ < x̂  x̄+MSx̂

 
=

8
><

>:

.683, M = 1,

.954, M = 2,

.997, M = 3

. (2.19)

The central limit theorem tells us that the sample mean follows a normal distribution,
regardless of the distribution of the underlying sample, as the number of samples approaches
infinity. This means that no matter what distribution is being sampled, the sampled mean
will have this expected behavior. As a result, given a calculated value for x̂ and S, the
probability that x̂ is near x̄ is known and calculable. Further, the central limit theorem
shows that this distribution is approached very quickly as N increases, with most problems
only requiring N > 30 [7]. Note that N is not the total number of samples, but the number
of samples required to calculate each mean.

However, for the central limit theorem to hold a number of requirements must be satisfied.
All of the quantities in Section 2.1.1.1 have the underlying assumption that each xi is assumed
to be randomly sampled and independent of other xi. If some region of phase space is omitted
accidentally, these values will not be reflective of the true f(x), and so x̂ will not approximate
x̄. Further, for S to be a good approximation of �(x), a large number of N samples must
contribute to the calculation of x̂. The central limit theorem also assumes that f(x) is a
probability density function that can be sampled and has a variance that exists. As a result,
one must be reasonably sure that all of these requirements are satisfied if using Monte Carlo
sampling methods.

2.1.1.3 The Figure of Merit

The equations in the preceding sections describe how to estimate the statistics of a population
given a finite number of samples. In radiation transport, a user seeks to estimate some
response, the relative error associated with that response solution, and the time it takes to
obtain those values. Equation (2.11) described the relationship between the sample variance,
the relative error, and the number of particles as

S2 / R2 / 1

N
.

The relationship between the relative error, R, and the number of particles, N , (recall that
R2 / 1

N ) will be some constant value (C):

C1 = R2N.

As a problem is simulated, the number of particles run, N , will increase proportionally to
the computational transport time, T . Therefore, the relationship between R and T should
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also be a constant.
C2 = R2T

The figure of merit (FOM) shown in Eq. (2.20) is the most commonly reported metric using
this relationship that is reported. It is widely used in quantifying the e↵ects of variance
reduction methods. Because it uses the inverse quantity of the relative error and time, a
“good” result would be obtained from a low relative error in a short amount of time, resulting
in a FOM with a high numerical value.

FOM =
1

R2T
(2.20)

Further, a user may desire to determine how long a problem must be run to obtain a desired
relative error. In that case, Eq. (2.20) can simply be rearranged to

R =
1

(FOM ⇤ T )1/2 .

The figure of merit is a very useful tool, but it is limited by statistical precision in calcu-
lating R. It is worth noting that early on in a transport simulation, when too few particles
have been simulated to e↵ectively capture S or x̂, the FOM will oscillate. Eventually, the
FOM will converge to a relatively constant value. This behavior can also be used to de-
termine whether one has su�ciently sampled the region in which they are quantifying the
response.

2.1.2 Variance Reduction Methods for Monte Carlo Radiation
Transport

Now that the di↵erent parameters that a↵ect the variance in a problem have been introduced,
let us transition to di↵erent variance reduction techniques that are available in Monte Carlo
radiation transport packages. Variance reduction techniques in radiation transport methods
fall into four general categories: truncation methods, population control methods, modified
sampling methods, and partially-deterministic methods. Of importance for this project are
population control methods and modified sampling methods, which are discussed in a number
of the papers referenced herein. Truncation methods and partially-deterministic methods do
not contribute to and are not the focus of this work, so will only be touched upon briefly.

A later section (3.3) of this dissertation will discuss the choice of software packages used
for this project. In particular, our hybrid methods software package is designed to accelerate
the Monte Carlo radiation transport package MCNP [10, 9, 8]. Variance reduction methods
are available in a number of other Monte Carlo radiation transport packages, and are by
no means limited to a particular code. However, the implementation of methods di↵ers
between software and the specifics may di↵er slightly. The discussion for the remainder of
this subsection will be centered around the specifics of the code used for this project.
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Figure 2.1: Cartoon illustration of a weight window, adapted from [9, 11]

Population Control Methods

Population control methods adjust the particle population in the problem to obtain bet-
ter sampling in regions of interest by preferentially increasing or decreasing the particle
population. The first two types of population control methods that will be discussed are
called splitting and rouletting. Splitting is a method by which the particle population can
be increased by splitting a single higher-weight particle into several lower-weight particles.
Rouletting, conversely, reduces the particle population by stochastically killing particles.
Particles that survive a rouletting routine have their weight adjusted higher, thereby con-
serving weight in the routine. Both splitting and roulette maintain a fair game by adjusting
the particle weights as each routine is performed; statistically, the sum of the child particle
weights is the same as the parent weight as it entered the routine.

To use population control methods e↵ectively as a variance reduction technique, splitting
is performed in high-importance regions to increase the particle count, and thus the sampling,
in important regions. Conversely, rouletting is performed in low-importance regions to reduce
the particle population in regions that are unimportant to the tally result. Splitting and
rouletting can be applied to include geometry, energy and time.

The weight window combines splitting and rouletting to keep particles within a desired
weight range. Figure 2.1 illustrates the di↵erent processes a particle may go through when
passing through a weight window. The top particle entering the weight window is a single,
high-weight particle. The weight of this particle is above the weight window bounds, so as it
enters the weight window it is split into multiple particles whose weight is within the window
bounds. The second particle entering the window is within the weight window bounds, so it
retains its weight and is not split or rouletted. The last two particles entering the window
have weights lower than the bound. They undergo a rouletting routine and one particle is
killed and the surviving particle is increased in weight. As these particles leave the window,
all of them have weights within the range of the window. This will reduce the variance of
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the particles contributing to a tally in that region.
While the use of weight windows in a problem helps to keep a more ideal distribution

of particle weights, the user is faced with calculating a significant number of parameters
to determine weight windows for the entire problem. In the best case with an experienced
user, this may just take time. With an inexperienced user or a complex problem this can be
insurmountable, and may be too di�cult to do without some automated assistance.

It should be noted that while splitting and rouletting can be performed on a single
variable–angle, energy, space, or time–the weight windows generally used are either energy-
space dependent or space-time dependent. Further, the weight window will split or roulette
depending on the particle weight entering the window. Splitting and rouletting on their own
either increase or decrease the particle weight proportional to the ratio of cell importances,
or I 0/I, no matter what the entering particle weight is. As a result, poorly chosen splitting
or rouletting parameters can still have significant tally variance, because particle weights
may still span a wide range.

Modified Sampling Methods

Modified sampling methods adjust transport by sampling from a di↵erent probability dis-
tribution function than the actual distribution for the problem. This is possible if, as with
population control methods, the particle weights are adjusted accordingly. The new proba-
bility distribution function should bias particles in regions of high importance to the problem
tallies. In MCNP, a number of modified sampling methods exist. These include the expo-
nential transform, implicit capture, forced collisions, source biasing, and neutron-induced
photon production biasing.

The exponential transform modifies particle transport from the analog problem by arti-
ficially modifying the macroscopic cross section, and thus the distance-to-collision, to move
particles in important directions. In directions of higher importance, the cross section is
reduced, and particles can flow more freely. In directions of lower importance, the cross sec-
tion is increased, and particles more frequently interact, thereby increasing their probability
of directional change or absorption. The transformed cross section used by the exponential
transform is defined by

⌃⇤
t = ⌃t(1� pµ), (2.21)

where ⌃⇤
t is the transformed total cross section, ⌃t is the true total cross section, p is the

transform parameter, and µ is the cosine of the angle between the preferred direction and
the particle’s transport direction [8, 11, 10].

Because the particle’s transport is adjusted in the exponential transform, the particle
weight must be adjusted accordingly. This is given by

w⇤ =
⌃te�⌃

t

s

⌃⇤
t e

�⌃⇤
t

s

=
e�⇢⌃

t

µs

1� pµ
,
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where s is the phase space of particle residence. This weight adjustment ensures that the
particle weight is conserved throughout transport, even as the cross section is altered. Be-
cause the cross section in the problem is both energy and material dependent (depending
on the geometry), the exponential transform will be dependent on space and energy, and
particles will be biased in both. While a powerful method, the exponential transform is
quite di�cult to use and if p is ill-chosen this method can perform quite poorly. Further, the
user has to know quite a bit about the problem physics and material to choose an optimal
quantity for p.

Source biasing, rather than preferentially adjusting particles’ directionality by way of
adjusting the cross sections, biases particles from their origin. Source biasing has the option
to bias particles in energy, direction, and space (if the source is volumetric). This allows
the user to choose importance separately for each variable. First, the source variable (let
us consider energy for the moment) is defined as a series of bins or a function. Second, the
bins are assigned probabilities of occurrence according to their importance. An energy bin
with a high importance will be assigned a high probability of occurrence, and a bin with low
importance will be assigned a low probability of occurrence. As particles are born in the
bins with higher importances, they will have their weights adjusted to the inverse of their
probability of occurrence, or w⇤ = p/p⇤. Here p refers to the probability density function for
the source particles; it bears no relation to the exponential transform factor.

Source biasing is a very simple method that can reduce the solution variance significantly.
However, if a user chooses bin sizes or a function that does not properly reflect the particles
importances in the problem, the source will be poorly sampled. As a result, sampling may
be very ine�cient and the figure of merit will decrease. In MCNP, if poor parameters are
chosen for this method, the user is given a warning.

Truncation Methods

Truncation methods stop tracking particles in a region of phase-space that is of low-importance
to the tally. These methods can be used in space (a vacuum boundary condition), energy
(eliminate particles above or below a specified energy), or time (stop tracking after a given
time). To e↵ectively use these methods, the user must be aware of particles’ importance to
a tally result. If particles that are important to a result are eliminated with a truncation
method, the tally will lack the contribution from that particle’s phase-space, and will be un-
derestimated as a result. Further, as discussed in Section 2.1.1.2, the central limit theorem
only holds assuming that the histories tracked are independent and drawn from identical
distributions. Truncating particles of high importance removes the independence from the
sampling and modifies the underlying PDF being sampled, so the estimate of the response
will be wrong.

It is important in using any variance reduction technique to ensure that a fair game is
being played. The user must ensure that the fundamental nature of the problem is not being
changed by using a variance reduction technique, or the answer will not be representative
of the original problem. Automated variance reduction techniques aim to eliminate this
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uncertainty for the user by estimating the importance of particles in some way and then
setting up variance reduction parameters automatically. The remainder of this chapter
review will focus on e↵orts to automate population control methods and modified sampling
methods for variance reduction.

2.1.3 Automated Variance Reduction Methods for Monte Carlo
Radiation Transport

Section 2.1.2 described some methods that one may use to reduce the variance in Monte Carlo
radiation transport tallies. These methods, if used correctly, can significantly increase the
transport e�ciency in a Monte Carlo simulation. However, correct use of these methods often
requires intelligent selection of variance reduction (VR) parameters, which is a non-trivial
task. Users have found themselves often performing several trial runs before choosing final
quantities for the VR parameters in their problems, which was computationally ine�cient
and required significant knowledge of Monte Carlo and variance reduction to execute well
[12].

This has been addressed by using Monte Carlo to sample the problem in an initial calcu-
lation to determine more favorable variance reduction parameters automatically. Booth and
Hendricks, recognizing that choosing optimal weight window values for energy- and space-
dependent weight windows was di�cult even for experienced users, proposed two tools for
Monte Carlo variance reduction in parallel. The first was a Monte Carlo importance gener-
ator [12] that could be used to make informed decisions on cell importances throughout the
problem. The second method, a Monte Carlo generated weight window generator, calculates
the weight window values automatically for a given problem [13]. The importance generator
estimates a cell’s importance by tracking the weights of the particles in the cell, or

Importance =
score of particles leaving the cell

weight leaving the cell
. (2.22)

The weight window generator calculates weight window values with

Wi,low =
1

kN

�
⌃Wi,in + ⌃Wi,out

�
(2.23a)

Wi,high =

(
k ⇤Wi,low if Wi,low 6= 0

1 if Wi,low = 0
, (2.23b)

where Wi,low and Wi,high are the weight window lower and upper weight bounds respectively,
Wi,in and Wi,out are the total weight entering and leaving the cell, N is the number of source
particles, and k is some weight window width (a constant that Hendricks set to 5).

In his paper, Booth notes that the weight window target value derived from the impor-
tance generator was chosen so that the track weight times the expected score in the tally
region (for unit track weight) was approximately constant. Booth’s importance generator
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saw improvements in the FOM between 1.5-8x when compared to the analog run for the test
problem presented.

Booth and Hendricks combined these two methods to automate weight window genera-
tion based on phase-space importance [14, 15]. They showed that the combination of the
importance estimator and the weight window generator was a successful way to perform
variance reduction in deep-penetration problems. However, their method depended on sev-
eral iterations of importance-determining runs to obtain a satisfactory estimation of the
importance. For a 300 cm slab problem, the FOM was increased from 1.9 to 75, but took
10 subsequent runs to obtain the FOM of 75, and these runs ranged from 1.2 min (for the
analog problem) to 42 minutes (for the 9th run [15]).

It should be noted that both the importance generator and the weight window generator
use a lower-fidelity Monte Carlo run to gain an initial estimate for a cell’s importance and
generate variance reduction parameters from them to bias a more computationally-intensive
and higher-fidelity run. Naturally, the variance reduction parameters generated by using
these techniques are limited by the statistical precision in the regions used to generate them.
Hendricks also pointed out that the weight window generator tended to populate all regions of
phase space equally, which he conceeded was not ideal for all problems [13]. Furthermore, for
deep-penetration particle transport, the variance reduction parameters for low flux regions
are exceedingly di�cult to generate, resulting in unfavorable VR parameters.

The MCNP [8, 9] weight window generator has been extended beyond the initial space-
and energy-implementation described in Booth’s paper. It now has the ability to auto-
matically generate space- energy- and angle-weight windows. The importance generator in
MCNP also has been extended to time-importance; the values of which can be used for
splitting or rouletting parameters [9], and can be optimized on a grid independent from the
MCNP geometry [16].

As with Booth and Hendricks’ original implementations, this updated weight window
generator still relies on adequate sampling to obtain su�cient weight window parameters.
When additional degrees of freedom, like angle-dependence, are added, the time to converge
on those parameters takes even longer. The weight window generator also only allows for a
single tally to be optimized at once, so multiple tallies cannot be optimized simultaneously.
Finally, the weight window generator still requires user input and updating to seed the weight
window solution. The user must choose the meshing of the problem and have some intuition
as to how the problem should be subdivided. In the paper by Van Riper et al, it was found
that depending on user experience, the weight window generator can have di↵erences in the
FOM from 2 to 10 times [17] for the problems that they investigated.

2.2 Importance Functions for Variance Reduction

The e↵ective use of variance reduction techniques can lead to a faster time to a desired
solution and a reduced variance in the specified tally. However, specifying variance reduction
parameters is not always a straightforward procedure. In simple geometries, a user might
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intuitively understand which regions of a problem may contribute more to a desired solution,
but for more complex geometries, this may not be so obvious. In the following subsections,
the theory in determining which regions of a problem are important to eliciting a tally
response will be described. The first topic discussed will be the concept of importance and
obtaining a measure of importance with Monte Carlo sampling. Second, the adjoint equation
and its relation to importance will be introduced. Last, the contributon solution and how
its relation to tally responses is reviewed.

2.2.1 The Concept of Importance

The concept of importance is, in essence, a means of defining which regions of a problem that
are likely to contribute to a response and which are less likely to contribute to a response.
The regions that are more likely to generate a response will have a higher importance than
those that do not. If an importance function for a system can be obtained computationally,
that importance function can be strategically used in variance reduction techniques to speed
up the Monte Carlo calculations.

As described in Section 2.1.3, Booth [12] proposed a method to quantify a cell’s im-
portance within a Monte Carlo simulation (Eq. (2.22)). In this method, Booth suggested
estimating the cell’s importance using Monte Carlo transport as:

Importance =
score of particles leaving the cell

weight leaving the cell
.

This particular calculation of importance follows from the intuitive explanation for impor-
tance in the preceding paragraph. Recall from Section 2.1.2 that in variance reduction
methods, the population of particles is increased in important regions such that the number
of samples or particles contributing to a tally increases, but the total problem weight is
conserved. More important regions should have many lower-weight particles to reduce the
tally variance. Using Booth’s bookkeeping method for estimating regional importance, if
a cell has a greater weight leaving the cell than the number of particles, that means that
the relative contribution of that cell to the tally is likely to be lower than other regions. If,
instead, the number of particles leaving the cell is greater than the weight leaving the cell,
then that region is more important to the tally response, because that particle population is
higher than other cells.

While this estimation of the importance requires only a Monte Carlo forward calcula-
tion of the problem, it was referred to as the forward-adjoint importance generator [12, 14,
15] because the bookeeping tracked by Eq. (2.22) was a forward-approximation of the ad-
joint. Adjoint theory and how it relates to importance will be discussed in Section 2.2.2.
Booth’s estimation of importance was used to generate weight window target values inversely
proportional to the importance. In this case, the track weight times the expected score is ap-
proximately constant in the problem. Choosing this inverse relationship between the weight
window and importance is common practice in variance reduction, and is often a good choice
because it is nearly optimal over a broad range of a problem phase-space [18].
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It should be noted that Booth’s method is reliant on the statistical precision of the cells
sampled to generate their importances. For deep-penetration problems, obtaining a “good”
estimate of the cell importances many mean free paths from the forward source takes several
iterations. With large fluctuations between iterations, this has the potential to be a very
slow and computationally ine�cient way to calculate importance in a problem. Using a
solution of the adjoint that is equally valid across all of the problem space is more ideal for
deep-penetration problems.

2.2.2 The Adjoint Solution for Importance

Using the solution of the adjoint formulation of the neutron transport equation is one of
the most widely recognized methods for generating an importance function. This subsection
will begin with a brief summary of adjoint theory. A discussion on how the adjoint solution
di↵ers physically from the forward solution for a particular problem follows. Last, some early
investigations on how the adjoint and importance are related are summarized.

2.2.2.1 Theory

In previous sections we have reviewed the statistical precision of Monte Carlo-based meth-
ods, and how sampled results in Monte Carlo can be obtained in less time with variance
reduction methods. We have also briefly addressed the forward and the adjoint solutions for
a particular problem. In neutron transport, the integral form of the forward, steady-state,
particle transport equation can be defined as:

⌦̂ ·r (~r, E, ⌦̂) + ⌃t(~r, E) (~r, E, ⌦̂) =
Z

4⇡

Z 1

0

⌃s(E
0 ! E, ⌦̂0 ! ⌦̂) (~r, E 0, ⌦̂0)dE 0 d⌦̂0 + qe(~r, E, ⌦̂), (2.24)

where ~r, E, and ⌦̂, are direction, energy, and angle, respectively, giving six dimensions
of phase-space in total.  is the neutron flux, ⌃ is the neutron interaction (scattering,
absorption, total) cross section, and qe is the external fixed source. Alternatively, this can
be written in operator form,

H = qe , (2.25)

where H represents the streaming, scattering, and absorptive terms from Eq. (2.24),  is
the angular flux as it is in Eq. (2.24), and qe is the source term.

The forward transport equation tells us where particles are moving throughout the sys-
tem. Of note: the particles move in the scattering term from E 0 into E, and from ⌦̂0 into ⌦̂.
Therefore, for a particular problem with a given qe, particles start at qe and move throughout
the system, either downscattering in energy, streaming out of the problem, absorbed by the
problem materials, or induce a response at the tally location.
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The adjoint equation of the same form, in contrast, can be expressed as:

� ⌦̂ ·r †(~r, E, ⌦̂) + ⌃t(~r, E) †(~r, E, ⌦̂) =
Z

4⇡

Z 1

0

⌃s(E ! E 0, ⌦̂! ⌦̂0) †(~r, E 0, ⌦̂0)dE 0 d⌦̂0 + q†e(~r, E, ⌦̂), (2.26)

or in operator form as
H† † = q†e, (2.27)

where the variables with † signify the adjoint-specific variables for the problem: the adjoint
flux  † and the adjoint source q†e. Note here that the particles in the adjoint equation move
from E into E 0, and from ⌦̂ into ⌦̂0, which indicates an upscattering in energy and a reversal
of direction when compared to the forward problem. The external source, too, is di↵erent,
changing from qe to q†e.

To solve the adjoint problem the adjoint source, q†e, can be chosen such that it has the
potential to reveal information about the forward problem. In MC variance reduction, we
seek to obtain information on the detector or tally response for the system. The response
for the forward problem given a defined source distribution q(~r, E, ⌦̂) is

Rtally =

Z

4⇡

Z

V

Z

E

 (~r, E, ⌦̂)⌃tally(~r, E, ⌦̂)dEdV d⌦̂, (2.28a)

where dE dV and d⌦ are the di↵erential spaces of energy, volume, and angle in the tally
region. This can be simplified using bracket notation, where the brackets indicate an inte-
gration over all phase-space,

Rtally = h ⌃tallyi. (2.28b)

 is the angular flux and ⌃tally is the e↵ective tally response function.
For a simple source-detector problem, we choose q†e to be ⌃tally; or the adjoint source is

the tally/detector response function for the system. Therefore, the adjoint particles start
at low energy at the detector location, move away from the adjoint source (the detector
location), and scatter up in energy. By making the choice that q†e = ⌃tally, the response
function can be written as a product for the forward flux and the adjoint source

Rtally = h q†i. (2.29)

By using the adjoint identity and the same operators H from Eqs. (2.25) and (2.27)

h , H† †i = h †, H i. (2.30)

Eq. (2.29) can be written as a function of the adjoint flux and the forward source distribution

R = h †qi. (2.31)

At this point, we know that the solution to the adjoint problem transports particles from
the adjoint source (which is the detector or tally location) into the problem phase-space. The
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adjoint particles are upscattered in energy and are transported in �⌦ relative to the forward
problem. However, it may not be immediately obvious how this adjoint solution relates
to importance for the forward solution. Let us start with a simple illustrative example: a
monoenergetic, monodirectional, point source. The forward source takes the form of a delta
function:

q(~r, E, ⌦̂) = �(~r � ~r0)�(E � E0)�(⌦̂� ⌦̂0).

Using this definition of the forward source and evaluating Eq. (2.31), we obtain

R = h †qi

=

Z

V

Z

E

Z

⌦

 †(~r, E, ⌦̂)q(~r, E, ⌦̂)d⌦̂dEdV

=  †(~r0, E0, ⌦̂0).

This result shows that the solution to the adjoint equation is the detector response for
the forward problem. As a result, the adjoint flux can be used as an indicator of a particle
produced in ~r, E, ⌦̂ contributing to a response in the system. This indicator can be thought
of as the particle’s importance to achieving the tally or response objective. Consequently, it
is often said that the adjoint is the importance function for the problem.

The adjoint solution is used in nuclear engineering for a number of applications, including
reactor physics and perturbation theory [19, 21, 20, 22]. However, Goertzel and Kalos’ early
work recognized its application for deep-penetration radiation shielding. Goertzel and Kalos
[23] showed analytically that the exact adjoint solution, if used as an importance or weighting
function for the forward Monte Carlo calculation, will result in a zero variance solution for
the forward Monte Carlo problem. Further, Kalos [24] showed in a 1D infinite hydrogen slab
problem that an analytically-derived adjoint importance function significantly improved the
speed to convergence for neutron transport in deep-penetration problems.

Goertzel and Kalos’ finding that an exact adjoint can lead to a zero variance solution
means that if a single particle is transported with the adjoint weighting function, its score
will be the same as the total system response. Only a single particle is required to get
an exact solution for the forward problem. This is prohibitive because obtaining an exact
adjoint solution is just as computationally expensive as getting an exact forward solution.
Instead, one seeks to obtain a good, but fairly inexpensive, estimate of the adjoint solution
based on computational limitations. A good importance estimate should help reduce the
variance in a reasonable amount of time and be relatively computationally inexpensive.
A Monte Carlo solution can provide a continuous solution over the problem phase-space.
However, as discussed in Section 2.1.2, the quality of this adjoint solution relies on the
number of samples used to calculate it and that may take a significant amount of time. A
deterministic solution has the potential to o↵er equal or better solution confidence across the
entire problem. However, it is discretized in space, energy, and angle. For deep-penetration
importance functions, we opt for deterministically-obtained solutions due to the solution’s
equally distributed validity.



CHAPTER 2. LITERATURE REVIEW 19

2.2.2.2 Implementation

Coveyou, Cain, and Yost [25] expanded on Goertzel and Kalos’ work by interpreting in which
ways the adjoint solution could be adapted for Monte Carlo variance reduction. In particular,
they investigated the choice of biasing schemes and how e↵ective they were at variance
reduction for a simple one-dimensional problem. They reiterated that the adjoint solution is
a good estimate for importance, but should not be calculated explicitly, and rather estimated
by a simpler model. The adjoint function is not necessarily the most optimal importance
function; however, it is likely the closest and most obtainable estimate of importance that
can be calculated [25]. They concluded that source biasing by the solution to the adjoint
equation or by the expected response is the best choice for Monte Carlo variance reduction,
as it can be used independently from any other variance reduction technique, and provides
good results.

Tang and Ho↵man [26] built o↵ of the parameters derived by Coveyou et al. [25] to
generate variance reduction parameters automatically for fuel cask dose rate analyses. In
their work, Tang and Ho↵man used the 1D discrete ordinates code XSDRNPM-S to calculate
the adjoint fluxes for their shielding problems. The results from this calculation were then
used to generate biasing parameters for Monte Carlo; specifically, they aimed at generating
parameters for energy biasing, source biasing, Russian roulette and splitting, and next event
estimation probabilities. They implemented their work in the SAS4 module in SCALE [27]; it
was one of the earlier implementations of a fully-automated deterministic biasing procedure
for Monte Carlo.

2.2.3 The Contributon Solution for Importance

Contributon theory is another useful concept that can be used as a measure of importance [28,
29, 30]. However, contributon theory quantifies importance di↵erently than adjoint theory.
In contributon transport, a pseudo-particle, the contributon, is defined. The contributon
carries response in the problem system from the radiation source to a detector. The total
number of contributons in a system are conserved by the contributon conservation principle:
all contributons that are emitted from the source eventually arrive at the detector. Much of
the work in this realm has been done by Williams and collaborators [28, 29, 30].

The contributon transport equation can be derived in a form analogous to the forward
(Eq. (2.24)) and adjoint (Eq. (2.26)) equations. The derivation of Eq. (2.33) and its
corresponding variables is available in a number of the sources referenced in this section,
so we will abstain from re-deriving it here. The angular contributon flux is defined as the
product of the forward and adjoint angular fluxes:

 (~r, E, ⌦̂) =  †(~r, E, ⌦̂) (~r, E, ⌦̂) . (2.32)
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The contributon transport equation is:

⌦̂ ·r (~r, E, ⌦̂) + e⌃t(~r, E, ⌦̂) (~r, E, ⌦̂) =
Z

4⇡

Z 1

0

ep(~r, ⌦̂0 ! ⌦̂, E 0 ! E) eP (~r, ⌦̂0, E 0)e⌃t(~r, E
0, ⌦̂0) (~r, E 0, ⌦̂0)dE 0 d⌦̂0 + p̂(~r, E, ⌦̂)R.

(2.33)

The units of phase-space are the same as observed in the forward and adjoint transport
equations. The symbols decorated with tildes denote variables that are unique to the con-
tributon equation; ep and eP are both probability functions related to scattering and e⌃ are
e↵ective cross sections. The e↵ective cross sections are given by:

e⌃t(~r, E, ⌦̂) = e⌃s(~r, E, ⌦̂) + e⌃a(~r, E, ⌦̂)

=

RR
⌃s(~r, ⌦̂00 · ⌦̂, E ! E 00) †(~r,⌦00, E 00)d⌦00dE 00

 †(~r, E, ⌦̂)
+

Q†(~r, E, ⌦̂)

 †(~r, E, ⌦̂)
.

(2.34)

Note here that the e↵ective scattering and absorption cross sections are adjoint flux-dependent.
Where the adjoint flux becomes small, the interaction probabilities will become large. As
a result, regions where the adjoint flux is high interaction probabilities become low, caus-
ing fewer interactions and more streaming. Conversely, regions with low adjoint fluxes–like
the problem boundary–will have a very high cross section, thus encouraging particle trans-
port back towards the adjoint source. This increased probability of interaction in low flux
regions encourages response particle (contributon) transport towards the detector or tally,
thus contributing to a response.

The scattering probability of a contributon at position ~r, E 0, and ⌦̂0 is:

eP (~r, ⌦̂0, E 0) =
e⌃s(~r, E 0, ⌦̂0)
e⌃t(~r, E 0, ⌦̂0)

, (2.35)

and the probability that a contributon scattering at ~r, E 0, and ⌦̂0 will scatter into d⌦̂ dE is

ep(~r, ⌦̂0 ! ⌦̂, E 0 ! E) =
⌃s(~r, ⌦̂0 · ⌦̂, E 0 ! E) †(~r, E, ⌦̂)

RR
⌃s(~r, ⌦̂0 · ⌦̂00, E 0 ! E 00) †(~r, E 00, ⌦̂00)d⌦̂00dE 00

. (2.36)

The distribution function governing the contributon source is

p̂(~r, E, ⌦̂) =
 †(~r, E, ⌦̂)Q(~r, E, ⌦̂)

R R R
 †(~r0, E 0, ⌦̂0)Q(~r0, E 0, ⌦̂0)d⌦̂0dE 0dV 0

, (2.37)

note that the contributon source is actually defined in Eq. (2.33) by the product of p̂ and R.
R is contributon production rate; it is given by integral of the adjoint flux and the forward
source

R =

Z Z Z
 †(~r, E, ⌦̂)Q(~r, E, ⌦̂)d⌦̂dEdV

= h †Qi
, (2.38)
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which is recognizable as the system response described in Section 2.2.2. It can also be shown
by integrating Eq. (2.33) over all phase space and ensuring that the function p̂ is normalized,
that

R = he⌃a i, (2.39)

or the rate at which contributons die in the detector is the same as the rate at which they
are produced by the contributon source. Knowing that R is the contributon production rate,
let us consider the probability that a particle will be absorbed in the detector, or P , given
by

P = h⌃a i. (2.40)

Adding a factor of  †/ † to the terms on the right hand side, this becomes

P =
D⌃a

 †  
†
E
. (2.41)

By using the identities from the contributon equation, this is also

P = hf⌃a i. (2.42)

Next, substituting the definition from Eq. (2.39) into this equation, it follows that

P = R. (2.43)

This is the same contributon conservation principle introduced at the beginning of this
section. Williams noted that one could go so far as to transport contributons rather than
real particles with Monte Carlo. Because every particle transported would eventually reach
the detector and give an exact value for R (as shown by Eq. (2.43)), this would lead to a
zero variance solution. However, the nature of solving the contributon equation with Monte
Carlo (or any other transport mechanism) involves knowing the exact solution to the adjoint
equation, and so relies on the same computational obstacles as solving the adjoint transport
equation.

As mentioned in the previous section, the adjoint flux is an indicator of a particle’s
importance to inducing a response. Conversely, the contributon flux describes the importance
of a particle to the solution. Becker’s thesis [31] aptly points out that this is illustrated most
dramatically in a source-detector problem, where the forward source has little importance to
the adjoint source, but does have importance to the problem solution. As a result, both the
contributon solution and the adjoint solution can be considered importance functions for a
problem, but the importance that they describe di↵ers.

Williams recognized the applications of contributons to shield design and optimization
in an extension of contribution theory called spatial channel theory. In particular, Williams
noted that variables relevant to contributon response were useful in determining transport
paths through media [30, 32]. A study of di↵erent contributon values throughout the system
could enlighten users on regions with higher response potential. This could then be used to
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intelligently choose regions for detector locations or add to shielding. The contributon values
in this theory include the contributon flux, the contributon density, the contributon current,
or the contributon velocity [33]. In this way, the user could find the particles most influential
to the response of the system. A region with high response potential is the most important to
a detector tally. The variables of response described by Williams are the response potential,
the response current, and the response vorticity [29].

Contributon theory and spatial channel theory have been applied successfully to shielding
analyses [34, 32] due to their ability to show particle flow between a source and response
e↵ectively. Williams and Engle showed that spatial channel theory can be used in reactor
shielding analyses. In their work, they used contributon currents to determine preferential
flow paths through the Fast Flux Test Facility (FFTF) [32]. Seydaliev [34] used angle-
dependent forward and adjoint fluxes and currents to visualize the contributon flux for
simple source-detector problems. In this work, he showed that contributon flow in the
system behaves much like a fluid between the source and detector, following preferential
flow paths more densely. Seydaliev also observed ray e↵ects in the contributon flux for high
energy photons, and traditional methods like using a first collision source, did not remedy
the issue. The contributon formulation of particle transport can show important particle
flow paths between a source and a detector, but it is still not immune to computational
obstacles that exist for standard forward- and adjoint- transport.

The past few subsections have described the di↵erent means by which importance can be
defined or quantified for a problem. As discussed in Section 2.2.1, generating an importance
function with Monte Carlo is limited in that the quality of the importance map is only as
good as the regions that are sampled. For deep-penetration problems, it may be prohibitively
di�cult to obtain adequate importance sampling with traditional Monte Carlo methods.

Deterministically-obtained importance functions, however, o↵er the benefit of a solution
that is equally valid across all of the problem solution-space. This is because the deterministic
solution’s precision is limited to convergence criteria, not sampling of individual particles.
Using a deterministic solution is often faster and much less computationally-intensive than
Monte Carlo for importance quantification. As a result, many hybrid methods opt to use
deterministically-obtained importance functions to generate variance reduction parameters
for Monte Carlo transport.

2.3 Automated Variance Reduction Methods for
Local Solutions

The next several sections (2.3 through 2.5) describe di↵erent ways that deterministically-
obtained importance functions can be applied to variance reduction methods in practice.
Local variance reduction methods are those that optimize a tally response in a localized
region of the problem phase-space. These types of problems may be the most immediately
physically intuitive to a user, where a person standing x meters away from a source may wish
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to know their personal dose rate. In this section, notable automated deterministically-driven
variance reduction methods that have been designed for such localized response optimization
are described. Recall that Booth’s importance generator (Section 2.1.3) was also designed
for localized tally results, but will not be elaborated upon here.

2.3.1 CADIS

In 1997, Haghighat and Wagner introduced the Consistent Adjoint-Driven Importance Sam-
pling method (CADIS) [1, 3, 2] as a tool for automatic variance reduction for local tallies in
Monte Carlo. CADIS was unique in that it used the adjoint solution from a deterministic
simulation to consistently bias the particle distribution and particle weights. Earlier methods
had not ensured the consistency between source biasing and particle birth weights. CADIS
was applied to a large number of application problems and performed well in reducing the
variance for local tallies [35].

The next several paragraphs present and discuss the theory supporting CADIS. Note
that the theory presented is specific to space-energy CADIS, which is what is currently
implemented in existing software. The original CADIS equations are based on space and
energy (~r, E) dependence, but not angle, so �† can be used rather than  †. This does not
mean that CADIS is not applicable to angle. This is merely a choice made by the software
and method developers given the computational resources required to calculate and store full
angular flux datasets, and the ine�ciency that using angular fluxes might pose for problems
where angle dependence is not paramount.

In trying to reduce the variance for a local tally, we aim to encourage particle movement
towards the tally or detector location. In other words, we seek to encourage particles to in-
duce a detector response while discouraging them from moving through unimportant regions
in the problem. Recall from Eqs. (2.29) and (2.31) that the total system response can be
expressed as either an integral of  † qe (the adjoint flux and the forward source), or  q†e (the
forward flux and the adjoint source). Also recall that the adjoint solution is a measure for
response importance.

To generate the biased source distribution for the Monte Carlo calculation, q̂, should be
related to its contribution to inducing a response in the tally or detector. It follows, then,
that the biased source distribution is the ratio of the contribution of a cell to a tally response
to the tally response induced from the entire problem. Thus, the biased source distribution
for CADIS is a function of the adjoint scalar flux and the forward source distribtion q in
region ~r, E, and the total response R

q̂ =
�†(~r, E)q(~r, E)RR
�†(~r, E)q(~r, E)dEd~r

=
�†(~r, E)q(~r, E)

R
.

(2.44a)

The starting weights of the particles sampled from the biased source distribution (q̂) must
be adjusted to account for the biased source distribution. As a result, the starting weights
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are a function of the biased source distribution and the original forward source distribution:

w0 =
q

q̂

=
R

�†(~r, E)
.

(2.44b)

Note that when Eq. (2.44a) is placed into Eq. (2.44b), the starting weight is a function of
the total problem response and the adjoint scalar flux in ~r, E. The target weights for the
biased particles are given by

ŵ =
R

�†(~r, E)
, (2.44c)

where the target weight ŵ is also a function of the total response and the adjoint scalar flux in
region ~r, E. The equations for ŵ and w0 match; particles are born at the same weight of the
region they are born into. Consequently, the problem limits excessive splitting and roulette
at the particle births, in addition to consistently biasing the particle source distribution and
weights. This is the “consistent” feature of the CADIS method.

CADIS supports adjoint theory by showing that using the adjoint solution (�†) for vari-
ance reduction parameter generation successfully improves Monte Carlo calculation runtime.
CADIS showed improvements in the FOM when compared to analog Monte Carlo on the
order of 102 to 103, and on the order of five when compared to “expert” determined or
automatically-generated weight windows [3, 4] for simple shielding problems. For more com-
plex shielding problems, improvements in the FOM were on the order of 101 [1, 3]. Note that
CADIS improvement is dependent on the nature of the problem and that these are merely
illustrative examples.

2.3.2 Becker’s Local Weight Windows

Becker’s work in the mid- 2000s also explored generating biasing parameters for local source-
detector problems [31]. Becker noted that in traditional weight window generating methods,
some estimation of the adjoint flux is used to bias a forward Monte Carlo calculation. The
product of this weight window biasing and the forward Monte Carlo transport ultimately
distributed particles in the problem similarly to the contributon flux. In his work, Becker
used a formulation of the contributon flux, as described in Eq. (2.32) to optimize the flux
at the forward detector location. The relevant equations are given by Eqs. (2.45a) - (2.45f).

First, the scalar contributon flux �c, which is a function of space and energy is calculated
with a product of the deterministically-calculated forward and adjoint fluxes, where

�c(~r, E) = �(~r, E)�†(~r, E). (2.45a)

This is then integrated over all energy to obtain a spatially-dependent contributon flux

�̃c(~r) = Cnorm

Z 1

0

�c(~r, E)dE, (2.45b)



CHAPTER 2. LITERATURE REVIEW 25

where the normalization constant, Cnorm, for a given detector volume, VD, is:

Cnorm =
VDR

V
D

R1
0 �c(~r, E)dEdV

. (2.45c)

The space- and energy-dependent weight windows are given by:

w̄(~r, E) =
B(~r)

�†(~r, E)
, (2.45d)

where
B(~r) = ↵(~r)�̃c(~r) + 1� ↵(~r) , (2.45e)

and

↵(~r) =


1 + exp

✓
�̃c
max

�̃c(~r)
�
�̃c(~r)

�̃c
max

◆��1

. (2.45f)

Becker found that this methodology compared similarly to CADIS for local solution vari-
ance reduction for a large challenge problem comprised of nested cubes. The particle density
throughout the problem was similar between CADIS and Becker’s local weight window. The
FOMs were also relatively similar, but were reported only with Monte Carlo calculation run-
times (meaning that the deterministic runtimes were excluded). Note that Becker’s method
requires both a forward and an adjoint calculation to calculate the contributon fluxes, while
CADIS requires only an adjoint calculation.

2.4 Automated Variance Reduction Methods for
Global Solutions

Variance reduction methods for global solutions are designed to obtain an even distribution
of error across several tallies or a tally map that spans the entire problem phase-space. The
previous section detailed several methods that automate variance reduction for localized
tallies. However, for global solutions these methods do not work well. The global tally
su↵ers from a large range in variance across the physical problem space, and the solution is
dependent on the flux distribution throughout the problem.

This section describes several methods that provide automated variance reduction for
global solutions or multiple tallies. The general principle that these methods follow is that
by distributing particles evenly throughout the Monte Carlo problem, a global tally will have
approximately the same sample size in each region, resulting in a uniform variance across the
tally. This often requires a forward deterministic solution to determine the density of forward
particles throughout the problem, and subsequently using that forward distribution to aid
in generating an importance map. This section summarizes the theory behind a number of
existing global variance reduction methods. The section is concluded with a summary of
how the methods performed and in which problems they performed well.
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2.4.1 Cooper’s Isotropic Weight Windows

Cooper and Larsen developed a weight window technique to reduce the variance of Monte
Carlo global solutions [36] using a calculation of the forward flux from solutions obtained
from di↵usion, quasidi↵usion [37], or pure Monte Carlo. In their work, Cooper and Larsen
utilized a forward solution to the transport equation to generate weight window values to
uniformly distribute particles throughout the problem. By doing so, the variance in the
scalar flux remained relatively constant throughout the problem for a problem-wide tally,
rather than rising significantly with increasing distance from the forward source. Cooper’s
“isotropic” weight windows (named because they were not dependent on ⌦̂ ) dependent on
~r are given by:

w̄w(~r) =
�(~r)

max�(~r)
, (2.46a)

ww(~r)top = ⇢w̄w(~r) , (2.46b)

and

ww(~r)bottom =
w̄w(~r)

⇢
, (2.46c)

where ⇢ is the weight window scaling factor. Note that by setting the weight window tar-
get value to be inversely proportional to the total flux in the cell, the density of particles
throughout the problem ends up as roughly constant. Also note from Eq. (2.46a) that the
weight windows are depend on space only.

In practice, Cooper’s algorithm iteratively switches between solving the di↵usion equation
with transport correctors (Eddington factors described by [38]), and Monte Carlo solutions;
this process is known as quasidi↵usion [38, 37]. An initial quasidi↵usion solution is used to
generate weight windows, and then after a relatively short runtime, the Monte Carlo solution
is used to generate updated Eddington factors for the quasidi↵usion solution.

Because Cooper’s method depends on Monte Carlo to generate the Eddington factors for
the quasidi↵usion problem, this method is limited by the iterative switch between the qua-
sidi↵usion solution and the Monte Carlo solution. The frequency with which this switching
happens is entirely up to the user, but may drastically a↵ect the e�ciency of the method.
Further, Cooper notes that we do not know at what point in time (for which number of N
particles) the Monte Carlo solution becomes more accurate than the quasidi↵usion solution,
which is an important issue in choosing solution parameters.

2.4.2 Becker’s Global Weight Windows

Becker, in addition to developing the local VR method discussed in Section 2.3.2, developed
a global space-energy weight correction method both with (Section 2.5) and without direc-
tional biasing [39, 31]. Becker’s global method uses a formulation of the space-dependent
contributon flux, as with the local weight windows described in Section 2.3.2. For reference,
those are defined in Eqs. (2.45a) and (2.45b).
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Becker defines the spatially-dependent contributon flux parameter as B(~r), where

B(~r) = �̃c(~r). (2.47)

Becker’s method defines a di↵erent adjoint source distribution depending on the response
desired for the calculation. To optimize the flux the adjoint source is defined as:

q†(~r, E) =
1

�(~r, E)
. (2.48a)

If the detector response is desired then

q†(~r, E) =
�d(~r, E)R1

0 �(~r, E)�d(~r, E)dE
, (2.48b)

can be used instead. The space- and energy-dependent weight windows are then a function
of the contributon flux, where

w̄(~r, E) =
B(~r)

�†(~r, E)
. (2.49)

The process followed by Becker’s global method uses two deterministic calculations to
generate weight windows for the Monte Carlo calculation. First, the forward flux is calculated
deterministically and used to construct the adjoint source distribution. After the adjoint
solution is run, the contributon flux is calculated. The contributon flux and the adjoint flux
are then used to construct the weight windows.

Becker’s method aims to distribute response evenly throughout the problem. However,
like FW-CADIS (discussed below in Section 2.4.3), the global response weight windows are
proportional to the forward response,

w̄(~r, E) /
R
�(~r, E)�(~r, E)dE

�(~r, E)
(2.50)

rather than the forward flux as in Cooper’s method, where w̄(~r, E) / �(~r, E) .
In implementation, both Becker and Cooper’s global methods undersampled the source

(in comparison to FW-CADIS, which will be described in Section 2.4.3) for a specified
calculation time. However, Becker’s method sampled ⇠1/3 the number of particles that
Cooper’s method did. Notably, Becker’s method did obtain better relative uncertainties for
low flux-regions in the problem.

2.4.3 FW-CADIS

In 2007, Peplow, Blakeman, and Wagner [40] proposed three methods by which variance
reduction could be decreased in global mesh tallies in deep-penetration radiation transport
problems. The first method, using a CADIS calculation where the adjoint source is defined at
the problem boundary, aimed at moving particles outward to the problem edges. The second
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method used standard CADIS, but instead defined each cell as equally important, so the
adjoint source was defined equally throughout the problem phase-space. The last method,
called Forward-Weighted CADIS (FW-CADIS), distributed the adjoint source across mesh
cells as an inverse relation to the forward response of the cell. In their work, Peplow et al.
found that the first method had large uncertainties in areas of the problem far from the
boundary; the second method performed slightly, but not significantly, better than analog;
and the third method had the most uniform uncertainty distribution.

FW-CADIS [5, 6, 41] built o↵ of the work by Cooper and the CADIS method. Like
Becker’s method, FW-CADIS uses a forward deterministic calculation to determine the
source distribution for the adjoint calculation. Unlike Becker’s method, which used contrib-
uton fluxes to construct weight windows, the CADIS method uses adjoint fluxes as the basis
of the weight window values. Similar to Cooper’s method, however, FW-CADIS uses the
forward calculation to determine how to evenly distribute particles throughout the prob-
lem. Like CADIS, FW-CADIS uses the adjoint solution from the deterministic calculation
to generate consistent source biasing, weight windows, and particle birth weights.

The adjoint source for the adjoint calculation is dependent on the desired response for
the system. The generic description for the adjoint source is given by Eq. (2.51) and more
specific parameters are given by Eqs. (2.52a)-(2.52c). First, we can describe a general form
of the adjoint source definition for all phase-space, P , as:

q†(P ) =
�d(P )

R
. (2.51)

Thus the adjoint source is dependent on the detector (or tally) cross-section and whatever
response is being calculated in the system. Depending on whether the response is a flux or
a dose rate, the adjoint source will di↵er. For example, the adjoint source for the spatially
dependent global dose,

R
�(~r, E)�d(~r, E)dE is:

q†(~r, E) =
�d(~r, E)R

�d(~r, E)�(~r, E, )dE
. (2.52a)

The adjoint source for the spatially dependent total flux
R
�(~r, E)dE is:

q†(~r) =
1R

�(~r, E)dE
. (2.52b)

Last, the adjoint source for the energy- and spatially- dependent flux �(~r, E) is:

q†(~r, E) =
1

�(~r, E)
. (2.52c)

The process followed by FW-CADIS is to initially run a deterministic forward calculation
to obtain the forward response. This solution is used to create the source distribution for the
adjoint problem. A second deterministic calculation is run to obtain the adjoint solution.
The adjoint solution is then used to generate variance reduction parameters in the same
manner as CADIS.
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2.4.4 Other Notable Methods

Baker and Larsen showed that the exponential transform can be used to generate VR pa-
rameters for global low-variance solutions in Monte Carlo [42]. In this work, Baker used a
forward di↵usion solution to generate parameters for a combination of VR techniques: im-
plicit capture and weight cuto↵, geometry splitting / rouletting with implicit capture and
weight cuto↵, and the exponential transform combined with implicit capture and a weight
cuto↵. The exponential transform method was then compared to the other combinations
of VR techniques to quantify its success. In their work, Baker and Larsen found that the
exponential transform approach did not work well for highly scattering problems, where
geometry splitting and Russian roulette were generally better options. Their work did not
focus on generating weight window values, nor was it tested on deep-penetration shielding
problems.

While the aforementioned methods in this and the previous sections use deterministically-
obtained solutions to generate importance maps, it should be noted that not all methods
use this approach. Booth and Hendricks’ methods used initial Monte Carlo calculations to
reduce the relative error in tallies. Two methods in the global variance reduction realm are
notable in that they too use Monte Carlo estimates of the flux to generate variance reduction
parameters [44, 43]. Van Wijk et al. [44] developed an automated weight window generator
that used a Monte Carlo calculation of the forward flux to generate weight window values.
The weight window target values could be determined based on either a flux-centered scheme
like Cooper’s (Eq. (2.46a)) or by using a ratio of the square roots of the fluxes. The second
method is a combination of Cooper’s weight window target values and knowing that the
relative error in a region is proportional to the square root of the number of particles. Van
Wijk et al. applied their methods to a PWR facility and observed a FOM increase by a
factor of >200 when compared to analog Monte Carlo. However, as with other Monte Carlo-
generated VR parameters, for deep-penetration problems this approach relies on adequate
sampling of all phase-space, which could be computationally prohibitive.

The Method of Automatic Generation of Importances by Calculation (MAGIC) method
was proposed in parallel by Davis and Turner [43]. As with Van Wijk’s method, the MAGIC
method uses an analog forward Monte Carlo –potentially with several iterations–calculation
to generate weight windows. The initial Monte Carlo runs used to generate the importance
map took less time to converge by using multigroup (rather than continuous energy) cross
section data as well as energy cuto↵s. MAGIC converged on a finalized importance map by
iteratively running several lower-fidelity Monte Carlo calculations.

Davis and Hendricks compared three variants of MAGIC to FW-CADIS in ITER fu-
sion energy systems. These three variants used di↵erent weight window adjustments for
importances: weight windows in cells based on existing weight information, weight windows
in mesh cells based on flux information, and weight windows in cells based on population
density. It was concluded that the most e↵ective method for variance reduction of those
proposed in the paper was MAGIC’s weight window in mesh cells based on flux information.
In this case, FW-CADIS’ FOM was 65% that of MAGIC’s. This compared similarly to Van
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Wijk’s method, where the flux-based results continued improving the FOM as the computa-
tional time increased. The authors did not make it clear how many iterations were required,
on average, to generate the finalized weight window map or if the time to iteratively gener-
ate the importance map was included in the FOM. While FW-CADIS’ FOM was lower than
MAGIC’s, FW-CADIS had the highest fraction of cell voxels with very low relative errors.

Peplow et al. [45] compared the performance of Cooper’s method, Van Wijk’s method,
Becker’s method, and FW-CADIS across a number of shielding calculations. For a simple
shielding problem, FW-CADIS had the shortest runtime, which included the forward and
adjoint deterministic runtimes, and had a FOM 80x higher than the analog calculation, and
more than 3x higher than the next best hybrid method. Van Wijk’s method was the only
method other than FW-CADIS to pass all statistical convergence checks for the problem, but
its reported FOM was lower than either Becker’s method or FW-CADIS. In a second deep
penetration shielding problem, FW-CADIS was the only method that passed all statistical
convergence checks. FW-CADIS also had the highest reported FOM for this problem. The
timing for all of the methods were comparable. Peplow et al. also ran two “challenge”
problems. As with the first two problems, FW-CADIS outperformed the other methods and
passed all statistical checks. Becker’s method was consistently comparable to FW-CADIS in
reported FOMs, but only passed all of the statistical checks in a single challenge problem.
Becker’s method also performed relatively better than the other methods in deep-penetration
challenge problems.

The ubiquity and continued development of global variance reduction methods illustrates
the need and desire for them in the nuclear engineering community. Some of the methods
discussed in this section–including Becker’s global weight windows, Cooper’s weight windows,
Van Wijk’s method, and FW-CADIS–have been applied to large application problems and
compared to other methods. All of the methods reduce the time to a “good” solution–thus
improving the final FOM–when compared to analog Monte Carlo. When compared against
one another, FW-CADIS consistently outperforms the other methods.

2.5 Automated Angle-Informed Variance Reduction
Methods

In a number of problems, the angular dependence of the flux is significant enough that biasing
in space and energy exclusively is not su�cient. As a result, a subset of hybrid methods were
developed to incorporate some degree of the flux anisotropy in variance reduction parameters.
Without explicitly calculating the angular flux, which is memory- and storage-intensive,
methods attempted to approximate the angular flux using other information more readily
accessible to them. These approaches are broadly categorized as methods that bias using
population control methods (such as weight windows), and methods that bias with modified
sampling methods (such as the exponential transform). Initial approaches to angular biasing
focused on approximating the angular flux,  , as a separable function of the scalar flux
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and an angle-dependent multiplier. These approximations of the flux were then used to
generate biasing parameters dependent on angle for highly angular-dependent problems. In
this section, methods that generate variance reduction parameters dependent on angle or
that include angular information are described.

2.5.1 Angular Biasing with Population Control Methods

2.5.1.1 AVATAR

The AVATAR [17, 46] (Automatic Variance and Time of Analysis Reduction) method gen-
erates three-dimensional, space-, energy- and angle-dependent weight windows for Monte
Carlo. The implementation of AVATAR by the authors uses a relatively course-mesh and
few-angle deterministic calculation in THREEDANT, approximating the angular flux as a
function of the scalar flux, and then subsequently passes those flux values through a postpro-
cessing code, Justine, to generate weight windows for MCNP [8]. The AVATAR approach
to determining the angular flux uses an approximation of the angular flux based on the
maximum entropy distribution, which is briefly summarized in the next few paragraphs.

Information Theory

First, for a given set of discrete values xi, i = 1, 2, · · ·n that are passed to a function, f(x),
the expectation value of that function is given by

⌦
f(x)

↵
=

nX

i=1

pif(xi). (2.53)

For the probability distribution pi = p(xi), i = 1, 2, · · ·n, the entropy of p is defined as

H(p) = �K⌃ipi ln pi , (2.54)

where K is a positive constant. A proof that this is indeed the associated maximal entropy
associated with all pi is given in [47]. For a continuous probability density function p(x) over
the interval I, the entropy of the continuous function is

H(p) = �K

Z

I

p(x) ln p(x)dx. (2.55)

To maximize either of these distributions, while also maintaining that ⌃pi = 1, one can
use Lagrangian multipliers � and µ

pi = e���µf(x
i

). (2.56)

This set of equations can be solved using

⌦
f(x)

↵
= � @

@µ
lnZ(µ) , (2.57a)
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and
� = ln

⇥
Z(µ)

⇤
, (2.57b)

where
Z(µ) = ⌃ie

�µf(x
i

). (2.57c)

Jaynes [47, 48] showed that the maximum entropy probability distribution function cor-
responding to the previous equations is given by

pi = exp
⇥
�
�
�0 + �1f1(x1) + · · ·+ �mfm(xi)

�⇤
, (2.58)

and the entropy of this distribution is given by

Smax = �0 + �1
⌦
f1(x)

↵
+ · · ·+ �m

⌦
fm(x)

↵
. (2.59)

In this case, the constant K from Eq. (2.54) has been set to 1.
The maximum entropy approach to calculating a probability distribution function is an

attractive option given limited information about that distribution. This method’s power
lies in that it deduces a function given limited information, but does not place too great of an
importance on missing or unwarranted information. Furthermore, a distribution ascertained
from this methodology will encompass all distributions with smaller entropies that satisfy
the same constraints. Thus, the method provides the most widely applicable probability
distribution function for the system that has been defined.

Moskalev showed that by using the maximum entropy approach, a distribution function
could be reconstructed from a (truncated) Legendre expansion [49]. This is particularly
applicable to radiation transport because scattering terms are often truncated Legendre
expansions. In his application, Moskalev derived a generalized form of reconstructing a
probability distribution from a truncated expansion, where the true function represented by
a Legendre polynomial series,

f(L, µ) =
LX

l=0

�2l + 1

2
flPl(µ) , (2.60)

could be associated with an adjusted function (obtained from maximizing the entropy of the
known values),

f̃(L, µ) = exp
� LX

l=0

�lPl(µ)
�
, (2.61)

such that
(f, Pl) = (f̃ , Pl); l = 0, · · · , L. (2.62)

Here, �l are the Lagrange multipliers, f̃ and f are 2 �, and are assumed to be a function of
µ such that f(µ) � 0, µ 2 [�1, 1]. These generalized equations were then applied to group-
to-group scattering probability distribution functions, as well as reconstructing a L = 3
function. The reconstruction showed agreement except near the extrema of µ.
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Walters and Wareing [51, 50] showed that the angle-dependent source definition for a
discrete ordinates transport problem could be calculated using Moskalev’s approach [49]. In
their method, they used this approach to reconstruct the source distribution of particles in
each cell from the source moments. For standard methods, the source in a cell expanded in
Legendre moments is

Sm(x) = Sm,j


P0(x) +

Sx
m,j

Sm,j
P1(x)

�
, (2.63)

where Sm,j is the average source in cell j, direction m, Sx
m,j is the P1(x) moment of the

source, and the P0 and P1 are the associated Legendre polynomials. Using a normalized
source distribution sm(x) where

Sm(x) = sm(x)Sm,j,

and the normalized distribution is

sm(x) =
⇥
s0 + s1P1(x)

⇤
. (2.64)

In this equation, s0 and s1 are the zeroth and first Legendre moments of the source, respec-
tively. The source distribution derived from the maximum entropy distribution is

s̃(x) =
�1,k

sinh(�1,j)
e�1,jP1(x). (2.65)

s̃ has normalized Legendre moments s0 and s1 that match sm(x). Because s̃ satisfies the
information that can be obtained about sm, it can be used to reconstruct Sm(x):

Sm(x) = s̃m(x)Sm,j. (2.66)

�1,j can be found with

s1 = 3


coth(�1,j �

1

�1,j
)

�
. (2.67)

It should be noted that the same methodology that Walters and Wareing use to reconstruct
the source distribution from the source moments can be used to reconstruct the angular flux
in cells based on moments of the angular flux (i.e. the scalar flux and current) [51].

In their paper, Walters and Wareing [50] suggested that in place of solving Eq. (2.67)
for �1,j, that a rational polynomial be used in its place to reduce computational time. The
suggested polynomial for 0  �1,j  5 is:

�1,j =
2.99821(

s1,j
3

)� 2.2669248(
s1,j
3

)2

1� 0.769332(
s1,j
3

)� 0.519928(
s1,j
3

)2 + 0.2691594(
s1,j
3

)3
, (2.68)

and for � � 5:

�1,j =
1

1� µ̄
. (2.69)
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A full derivation of Eq. (2.67) and how it satisfies the maximum entropy requirements can
be found in Appendix A of Ref. [50].

In their application, Walters and Wareing found that this method was accurate over a
fairly course mesh for the problems analyzed, and the computed fluxes remained positive over
the solution space. When compared to other methods, this approach performed much better
on coarse meshes. However, the analysis was limited to 1D problems. As mesh size grew
finer, the method performed similarly to other methods. Near vacuum boundary conditions,
�1,j ! 1 at the cell boundary, causing issues in calculating the flux in these cells.

AVATAR Implementation

AVATAR uss a deterministically-obtained solution of the adjoint scalar flux and adjoint
currents to reconstruct the angular flux distribution. The angular flux distribution is then
used to generate weight windows. AVATAR built o↵ of the methodology described byWalters
and Wareing [51, 50], but instead of reconstructing the source distribution inside the cell,
the maximum entropy method was used to reconstruct the angular fluxes. Thus the angular
flux,  , was reconstructed with the scalar flux, �, and the current, J .

AVATAR avoided generating explicit angular fluxes with THREEDANT by assuming
that the adjoint angular flux is symmetric about the average adjoint current vector, J† :

 †(⌦̂) =  †(⌦̂ · n) , (2.70a)

where

n =
J†

kJ†k . (2.70b)

Note that n, J, , and � all have implied dependence on (~r, E). The angular flux could then
be reconstructed assuming that the angular flux is a product of the scalar flux and some
angle-dependent function

 †(⌦̂ · n) = �†f(⌦̂ · n). (2.70c)

Note that Eq. (2.70c) takes the form of Eq. (2.66). Thus f is derived from the maximum
entropy distribution:

f(⌦̂ · n) = �e(⌦̂·n)�

2 sinh�
, (2.70d)

and � is a function of the average cosine µ̄

� =
2.99821µ̄� 2.2669248µ̄2

1� 0.769332µ̄� 0.519928µ̄2 + 0.2691594µ̄3

=
1

1� µ̄
(2.70e)
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for 0  µ̄ < 0.8001 and 0.8001  µ̄ < 1.0, respectively. Also, µ is given by

µ̄(~r, E) =

��J†(~r, E)
��

�†(~r, E)
. (2.70f)

Equations (2.70e) and (2.70f) are exact in both isotropic and streaming conditions [17].
Using the calculation of the angular flux described in Eqs. (2.70a) through (2.70f),

angle-dependent weight windows can be constructed. AVATAR’s space- energy- and angle-
dependent weight window is given by

w̄(~r, E, ⌦̂) =
k

�†(~r, E)f(⌦̂ · n)
, (2.71)

where k is a constant that can be adjusted to match the source distribution. In the case of
AVATAR, k was used as a normalization factor to ensure that source particles are born with
weights within the weight window. AVATAR exclusively generated weight windows, and did
not attempt to consistently bias the source distribution. Physically, the assumption behind
AVATAR is that the adjoint angular flux is locally one-dimensional, so azimuthal symmetry
is assumed.

AVATAR Results

The authors of AVATAR showed that AVATAR’s angularly-dependent weight windows im-
proved the FOM (from 5x to 7x) for a multiple-tally well-logging problem compared to the
MCNP weight window generator. AVATAR was also compared to other methods in sub-
sequent papers [16]. In an update of the MCNP weight window generator, AVATAR was
compared to variants of the weight window generator and had a FOM of 79 while variants of
the weight window generator had FOMs ranging from 105 to 119 [16]. However, the MCNP
weight window generator required multiple iterations of Monte Carlo transport to converge
on weight window values while AVATAR did not. Total runtimes for iteratively converging
on weight window values were in the 200 to 300 minute range, while AVATAR took roughly
5 minutes to converge on weight window values for the problem. Whether these calculations
were performed in serial or parallel were not discussed.

The MCNP weight window generator has also been adapted to use weight window values
seeded by a solution from AVATAR [16]. This method had FOMs comparable to the default
MCNP weight window generator, but only required 1 iteration to converge rather than 3.
This reduced the total transport runtime from roughly 260 minutes to 140 minutes, but still
required user experience and input to adequately set up and prepare the deterministic input
for AVATAR.

The method used by AVATAR to produce angle-dependent weight windows successfully
incorporated angular information into variance reduction parameters for Monte Carlo with
very little additional computational burden. However, because AVATAR was not fully auto-
mated, the user had to have knowledge on the use of the SN deterministic solver in addition
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to the Monte Carlo methods they were trying to optimize. As a result, the user needed to
adequately prepare the deterministic inputs, correctly specify the adjoint source for the de-
terministic solve, and then pass these values to postprocessing software [52, 16]. The FOMs
reported with AVATAR did not incorporate the additional time required for user setup and
preparation of inputs. Though this is not a customary time inclusion, the burden of time for
this process may be significant. Though more computationally e�cient than the weight win-
dow generator, this aspect of AVATAR may be too substantive of an obstacle for new-user
approachability. Further, it leaves more room for user-induced error.

The AVATAR method [17, 46] used an approximation of the angular flux–without ex-
plicitly calculating it–to generate angle-dependent weight windows. It operated with the
approximation that the angular flux was separable and symmetric about the average current
vector. The angular flux was then calculated using a product of a deterministically-obtained
scalar flux and an exponential function, derived from the maximum entropy distribution,
that was a function of the scalar flux and the current. Space-, energy-, and angle-dependent
weight windows for the Monte Carlo problem were then generated from the inverse of the
angular flux. AVATAR improved the FOM for sample problems from 2 to 5 times, but did
not apply to problems where the flux was not azimuthally symmetric.

2.5.1.2 Simple Angular CADIS

Simple Angular CADIS [52] is built on the theory of CADIS and FW-CADIS, but incorpo-
rates angular information in the methods. Simple Angular CADIS does so without explicitly
using angular flux solutions from the deterministic solution. Instead, the method reconstructs
the angular flux in the same manner employed by AVATAR, and additionally consistently bi-
ases the source distribution with the weight windows using the same methodology as CADIS
and FW-CADIS. Recall that the original implementation of AVATAR did not have consistent
source biasing. In their work, Peplow et al. implemented simple angular CADIS in MAVRIC,
a hybrid methods software package distributed with the SCALE codebase [27]. The Simple
Angular CADIS method was implemented with two di↵erent approaches to variance reduc-
tion: directionally-dependent weight windows with directionally-dependent source biasing
and directionally-dependent weight windows without directional source biasing.

Theory

The Simple Angular CADIS approach, like AVATAR, uses a reconstruction of the angular
flux derived from the maximum entropy distribution (Section 2.5.1.1). In Simple Angular
CADIS, the authors approximate the adjoint angular flux such that

 †(~r, E, ⌦̂) ⇠= �†(~r, E)
1

2⇡
f(⌦̂ · n̂) , (2.72)

where f(⌦̂ · n̂) is given by the same Eqs. (2.70d), (2.70e), (2.70f) as AVATAR. Note that this
di↵ers from AVATAR’s reconstruction of the angular flux, Eq. (2.70a), by a factor of 1/2⇡.
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As it was only dependent on µ, AVATAR’s original approach assumed azimuthal symmetry,
but did not incorporate any factor of integration into the angular flux reconstruction. By
including the azimuthal integration factor of 1/2⇡, this version of  † satisfies

�†(~r, E) =

Z
�† 1

2⇡
f(⌦̂ · n̂)d⌦̂.

The corresponding angle-dependent weight windows are then given by:

w̄(~r, E, ⌦̂) =
2⇡k

�†(~r, E)f(⌦̂ · n)
. (2.73)

For the variant method with directionally-dependent weight windows and without direc-
tional source biasing, the biasing parameters are given by Eqs. (2.74). The biased source
distribution, q̂(~r, E, ⌦̂), is given by a combination of the standard CADIS biased source,
�†(~r, E) and the original directional source distribution, q(⌦̂ · d̂) such that

q̂(~r, E, ⌦̂) =
1

R
q(~r, E)�†(~r, E)

1

2⇡
q(⌦̂ · d̂)

= q̂(~r, E)
1

2⇡
q(⌦̂ · d̂).

(2.74a)

The direction d̂ is sampled using the original directional source distribution q(⌦̂ · d̂). The
birth weight matches standard CADIS with

w0(~r, E, ⌦̂) =
q(~r, E, ⌦̂)

q̂(~r, E, ⌦̂)

=
R

�+(~r, E)
,

(2.74b)

and the weight window target value is given by

w̄(~r, E, ⌦̂) =
R

�†(~r, E)

f(⌦̂0 · n(~r0, E0))

f(⌦̂ · n)

= w̄(~r, E)
f(⌦̂0 · n(~r0, E0))

f(⌦̂ · n)
.

(2.74c)

Note that the biased source distribution, q̂(~r, E, ⌦̂), is a function of the biased source distri-
bution from standard space- energy-CADIS and of the original directional source distribution.
This is why this method has directional weight windows, but not directional source biasing.
For the second method, with directionally-dependent weight windows and with directional
source biasing, the biasing parameters are given by the equations summarized in Eqs. (2.75).
The biased source distribution is given by a combination of the space-energy biased source
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distribution, the original directional source distribution, and a directionally-dependent bi-
ased source distribution, f(⌦̂ · n̂0), such that

q̂(~r, E, ⌦̂) =
1

Rc
q(~r, E, ⌦̂)�†(~r, E, ⌦̂)

=


1

R
q(~r, E)�†(~r, E)

� 
1

c

1

2⇡
q(⌦̂ · d̂) 1

2⇡
f(⌦̂ · n0)

�

= q̂(~r, E)


1

c

1

2⇡
q(⌦̂ · d̂) 1

2⇡
f(⌦̂ · n0)

�
.

(2.75a)

The constant c is given by

c =

Z
1

2⇡
q(⌦̂ · d̂) 1

2⇡
f(⌦̂ · n0)d⌦̂. (2.75b)

The birth weights are also a function of direction, where

w0(~r, E, ⌦̂) =
q(~r, E, ⌦̂)

q̂(~r, E, ⌦̂)

=
R

�+(~r, E)

2⇡c

f(⌦̂ · n0)
,

(2.75c)

as are the target weights

w̄(~r, E, ⌦̂) =
R

�†(~r, E)

2⇡c

f(⌦̂ · n0)

= w̄(~r, E)
2⇡c

f(⌦̂ · n)
.

(2.75d)

Details about how the aforementioned equations were practically implemented are de-
tailed in Ref. [52]. The motivated reader may explore this reference for details on the
calculation of �, µ̄,

��J†(~r, E)
��, and f(⌦̂ · n̂0)

Results

To test these two modifications of CADIS, the authors ran a number of test problems and
compared them against standard implementations of CADIS and analog Monte Carlo runs.
For a spherical boat test problem, Simple Angular CADIS without directional biasing im-
proved the FOM by a factor of 2 to 3. Note that because the source is monodirectional,
directional source biasing was not compared. Simple Angular CADIS with- and without-
directional source biasing improved the FOM for active interrogation sample problems and
for simple duct streaming problems. The methods did not improve the FOMs for sample
problems using a neutron porosity tool or a gamma-ray litho-density tool.
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The range in performance for angle-dependent problems was explained by the authors as
a failure of the angular flux approximation to capture the true distribution of the angular
flux. Because Simple Angular CADIS uses the same approximation in calculating the angular
flux (Eq. (2.72)) as AVATAR, it is limited in the types of anisotropy that it can capture.
As a result, the biasing parameters for a problem are unlikely to adequately reflect the flux
distribution in problems where the flux is not captured e↵ectively by the P1 expansion.

The authors also noted that because the weight window is dependent on space/energy/an-
gle, the source birth weights only matched the weight window target values at a specific point
in the weight window region. If the weight window covered a substantial region of phase-
space, this could result in particle birth weights that do not adequately correspond to the
importance of the region that they are born into, resulting in increased runtime and a more
computationally-intensive calculation.

2.5.1.3 Cooper’s Weight Windows

Cooper and Larsen, in addition to generating global isotropic weight windows from a de-
terministic forward solution (as described in Section 2.4.1), also developed angle-dependent
weight windows [36]. Here, the forward angular flux is calculated in a similar manner as
the AVATAR method, where the angular flux is a product of the scalar flux and an angle-
dependent function. In this case, the adjustment factor also includes a factor of 4⇡,

 (~r, ⌦̂) ⇡ A(~r)e
~B(~r)·⌦̂, (2.76a)

where A(~r) and ~B(~r) are given by:

A(~r) =
�(~r)

4⇡

B(~r)

sinhB(~r)
(2.76b)

~B(~r) = B(~r)
~�(~r)���~�(~r)

���
(2.76c)

and

�(~r) = cothB(~r)� 1

B(~r)
. (2.76d)

If both A(~r) and ~B(~r) are inserted into the equation for  (~r, ⌦̂), Eq. (2.76a), the formula-
tion will be very similar to AVATAR’s reconstruction of the angular flux. However, Cooper’s
method di↵ers from AVATAR in the calculation of �(~r). Cooper noted that �(~r) could be
estimated with either the scalar fluxes and currents from a fairly low-cost quasidi↵usion
calculation,

�i(~r) =
Ji(~r)

�(~r)

=
1

⌃tr(~r)�(~r)

@

@rj
Eij(~r)�(~r) ,

(2.76e)
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or with the scalar fluxes and currents directly from the Monte Carlo solution (recall that
Eij(~r) is the Eddington factor described in Section 2.4.1). Cooper noted that because Monte
Carlo robustly calculates these values, it is the more optimal choice. After obtaining these
values from the deterministic calculation, Cooper’s angle-dependent weight window could be
calculated with

wwi,j(⌦̂) =
 i,j(~r, ⌦̂)

max�i0,j0/4⇡
. (2.76f)

As mentioned in Section 2.4.1, Cooper’s method was limited in that it used an iterative
quasidi↵usion / Monte Carlo solution to generate the biasing parameters for the problem.
This method was not automated; and the ideal frequency between iterations was never
explored. However, Cooper showed in two-dimensional example problems that the angularly-
dependent weight windows significantly improved the figure of merit as compared to analog
Monte Carlo. The distributions of the FOM and the resulting tally were also much smoother
with the approach described in their work. Further, the angular weight windows performed
slightly better than the isotropic weight windows in evenly distributing the particles, even
in problems where the anisotropy was not significant. However, like AVATAR, this method
is limited in the types of anisotropy it can quantify due to the approximations it uses to
reconstruct the angular flux. In generating the estimates for ~�, the authors found that
using a quasidi↵usion estimate was more e�cient than using Monte Carlo estimates, likely
because the estimates of the factors could be periodically updated as the solution iteratively
converged.

2.5.2 Angular Biasing Using the Exponential Transform

2.5.2.1 Early Work

As discussed in Section 2.1.2, the exponential transform is a modified sampling method that
adjusts the distance-to-collision in Monte Carlo transport to encourage particle transport
in preferential regions. This is done by modifying the sampled cross section. Recall from
Eq. (2.21) that the exponential transform is dependent on a transform parameter p and the
cosine angle µ, such that ⌃⇤

t = ⌃t(1� pµ). When used without angle biasing,

 †
g(r,⌦) ⇡ e⌃t

�·r , (2.77)

the exponential transform can have undesirable weight fluctuations [2], especially as the
number of collisions to reach a tally increases [53]. Eq. (2.77) shows that the importance
function (the adjoint flux) can be approximated as an exponential function varying in space,
dependent on the total cross section ⌃t, distance traveled r, and a parameter defining the
amount and direction of biasing �.

Dwivedi [54] showed that by adding an angle-dependent collision biasing scheme in ad-
dition to the exponential transform, the problematic weight fluctuations could be mitigated.
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The collision biasing scheme introduced with the exponential transform takes the form

 †
g(r,⌦) ⇡

�s,0e⌃t

�·r

4⇡�t(1� � · ⌦) . (2.78)

Note that the ratio of cross sections outside of the exponential function �s,0/�t, where �s,0
is the zeroth moment of the scattering cross section, the ratio of the cross sections is the
survival probability in an interaction event, and the (1� � · ⌦) term is consistent with the
weight adjustment required for the exponential transform (Eq. (2.1.2)). This was applied
to a monoenergetic problem with slab geometry and isotropic scattering, and the variance
was reduced by a factor of more than 100 when compared with other exponential transform
methods.

Gupta and Dwivedi’s subsequent work [53] adjusted the factor described in the preceding
paragraph by applying the exponential transform with angle biasing to deep-penetration
problems with anisotropic scattering. The authors did not explicitly use the true distribution
for anisotropic scattering, but rather chose to approximate the biased kernel to be a function
of the isotropic angular distribution. The authors observed a reduction in the variance by
a factor of 10, but they acknowledged that, while the combination of the biased kernel and
exponential biasing reduced weight fluctuations, it also had the potential to introduce other
weight fluctuations due to anisotropies in the flux.

Ueki and Larsen [55] generalized Dwivedi’s importance transform and applied it to
isotropic, linearly anisotropic, and quadratically anisotropic scattering. They observed that
Dwivedi’s method and the generalized Dwivedi method outperformed non-angle-dependent
exponential biasing for all types of scattering, and that their generalized method outper-
formed Dwivedi’s original method in higher order scattering. The work of Dwivedi, Gupta,
Ueki and Larsen was applied and each compared with one-dimensional sample problems.
Ueki and Larsen pointed out that their method could be extended to three-dimensional
problems using Turner and Larsen’s methodology (described in Section 2.5.2.2) [55].

In 1985, Henricks and Carter [56] described a method by which photon transport could be
biased in angle with an exponential transform adjustment factor. In this study, the authors
performed studies on three test problems with the exponential transform adjustment factor
and with a synergistic angular bias and exponential transform adjustment. In all studies, the
synergistic biasing outperformed the exponential transform adjustment alone. However, their
method performed best in highly absorbing media. The authors noted that this performance
was due to the fact that the biasing could be strong without undersampling scattering in the
problem. They also pointed out that, while the weight window method was comparable in
e�ciency to the method described, their method avoided choosing importances and weight
window values for biasing. Their method was limited to exclusively photon transport biasing,
and not neutron transport. However, the authors were optimistic that the method could be
extended to neutron transport with relative ease. Both, Niemal, and Vergnaud [57] also
derived VR parameters for the exponential transform and for collision biasing based on the
adjoint solution as a measure of importance.
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2.5.2.2 LIFT

The LIFT [58, 59] method developed by Turner and Larsen, and like Dwivedi’s exponential
transform, is a modification of the zero variance solution (see Section 2.2.3). Consequently,
the LIFT method uses a calculation of the adjoint flux as a measure for importance in the
problem to distribute particles according to the contributon density in the problem. LIFT
uses a deterministic calculation to generate biasing parameters for the exponential transform
and weight window variance reduction techniques.

As with the form of the importance function derived by Dwivedi (Eq. (2.78)), the LIFT
method generates an angle-dependent importance function by taking the product of a space-
based exponential function and an angle-informed collision estimator. Additionally, LIFT
uses a deterministic calculation of the adjoint scalar flux to inform the angular flux recon-
struction. The adjoint angular flux is approximated as piecewise continuous in space and
angle with Eqs. (2.79a) through (2.79d):

 †
g,n(r,⌦) ⇡ �†

g,nVn


�g,n

�s0,g!g,nbg,n(⌦)

�t,g,n � ⇢g,n · ⌦
e⇢g,n·(r�r

n

)

�
, (2.79a)

where the physical system is comprised of N regions of volume Vn, and  †
g,n is the approx-

imation of the angular flux for group g and region n. Further, �, the normalization factor,
is given by:

�g,n =
1

R
V
n

e⇢g,n·(r�r
n

)dr
R
4⇡

�
s0,g!g,n

b
g,n

(⌦)

�
t,g,n

�⇢
g,n

·⌦ d⌦
; (2.79b)

bg,n, the linearly anisotropic factor, is

bg,n(⌦) = 1 + 3µg!g,n
�t,g,n � �s0,g!g,n

|⇢g,n|2
⇢g,n · ⌦ ; (2.79c)

and the biasing parameter ⇢g,n is given by the product of the cross section and the biasing
parameter � seen previously in Eqs. (2.77) and (2.78),

⇢g,n = �t,g,n�g,n. (2.79d)

Turner showed that ⇢g,n can be obtained from the deterministic solution to the adjoint
equation, rather than from the cross section and �, which requires some assumptions on
the distribution of particles. Instead, Turner showed that ⇢ can be found in terms of the
deterministic scalar fluxes, where

⇢x,g,n =
1

�xn
ln

✓
�†
g,i+1/2

�†
g,i�1/2

◆
(2.80a)

⇢y,g,n =
1

�yn
ln

✓
�†
g,j+1/2

�†
g,j�1/2

◆
(2.80b)
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and

⇢z,g,n =
1

�zn
ln

✓
�†
g,k+1/2

�†
g,k�1/2

◆
(2.80c)

are all defined using cell-edge flux values in Cartesian coordinates.
Eq. (2.79a) is an adjustment of the exponential transform described by Dwivedi [54].

However, rather than relying upon an isotropic scattering law, like earlier implementations
of the exponential transform, the LIFT method adjusts the transform to instead be linearly
anisotropic in angle. The derivation of this equation for both linearly anisotropic scattering
and isotropic scattering is available in [58]. To summarize: the parameters �g,n, bg,n, and
⇢g,n are calculated from values obtained from the deterministic calculation and are used to
calculate  †

g,n.
In addition to using the exponential transform to bias the particles in angle, the LIFT

method also uses weight windows for particle weight adjustment. However, the computa-
tional cost of generating angle-dependent weight windows from the previous equations led
the authors to choose space-energy exclusive weight windows. The weight window target
values were calculated to be inversely proportional to the adjoint solution, as with other
methods

wwcenter,g,n =
�†
g,src

�†
g,n

. (2.81)

The LIFT method [58, 59], like AVATAR, calculated the angular flux for a region by
assuming the angular flux was a product of the scalar flux and an exponential function. The
angular flux values were then used to generate values for the exponential transform vari-
ance reduction technique to bias the particles in space, energy, and angle. Like AVATAR,
LIFT also generated weight window parameters. However, generating a full angle-dependent
weight window map and running Monte Carlo transport with those weight windows was com-
putationally limiting, and the authors chose to only generate space- and energy-dependent
weight windows. Turner showed that LIFT outperformed AVATAR for several example
problems, but both methods performed poorly in voids and low-density regions.

Turner compared a number of variants of LIFT [59] against AVATAR to determine the
e�ciency of LIFT. In his investigation, Turner compared LIFT and AVATAR using approx-
imations for the adjoint solution with di↵usion and SN transport calculations, and with
various methods to calculate weight window parameters, including using LIFT combined
with AVATAR’s weight window parameters. In most cases, LIFT outperformed AVATAR.
In problems with voids and low-density regions, the e�ciency of the LIFT method decreased,
but so did AVATAR. This independently confirmed the findings of the previous study. How-
ever, an important note that Turner mentioned was that while increasing the accuracy of
the deterministic solution may decrease the variance, it is not necessarily the best for the
FOM. This is a valuable lesson for all automated variance reduction methods: an overly
accurate solution for the adjoint problem may reduce the variance but come at such a high
computational cost such that it decreases the FOM.
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More recently, Keady and Larsen showed that LIFT could be improved upon further
by using cell-averaged currents and fluxes rather than cell-edge values for angular biasing
[60]. By using this modified variation of LIFT, material interfaces do not create strong flux
discontinuties on cell edges, resulting in a solution that is both smoother and more realistic.
Results were presented for a one-dimensional monoenergetic slab problem with material
interfaces. The modified version of LIFT outperformed both the original LIFT method and
Monte Carlo weight windows generated with forward deterministic weight windows.

2.6 Variance Reduction in Large Application
Problems

Variance reduction methods exist for Monte Carlo methods to achieve a more accurate answer
in a shorter amount of time. Automated variance reduction methods have been designed
to aid users in generating variance reduction parameters where it might not be intuitive or
obvious what variance reduction parameters are best for a problem. The most successful
variance reduction methods construct or estimate an importance function for the desired
response from a preliminary calculation. This importance function may be derived from the
adjoint solution to the transport equation, or it may be derived from contributon theory.

The methods described in Sections 2.3 through 2.5 have been implemented and tested
in a number of software packages. The problem spaces over which they have been applied
is extensive, and show that a large subset of application problems can be successfully simu-
lated with the assistance of existing variance reduction techniques. Local variance reduction
methods can be used to reduce the variance in source-detector problems where the detector
constitutes a small subset of the problem phase-space. Global variance reduction methods
can be used to distribute response sampling equally throughout several tallies or a problem-
wide tally. Angle-based variance reduction methods are used in problems where space- and
energy- variance reduction methods alone are not su�cient. For large and complex problems,
automated versions of each of these methods are required as the user expertise to obtain even
remotely adequate parameters is significant. Here, the existing state of automated variance
reduction methods and the applications on which they have been tested will be summarized.

Presently, numerous hybrid methods packages that use the methods described in the
preceeding sections are available. These packages are targeted towards deep-penetration
radiation transport and shielding applications. The CADIS and FW-CADIS methods are
distributed with MAVRIC [27, 40] and ADVANTG [61] from Oak Ridge National Laboratory
(ORNL), which use the discrete ordinates code Denovo [62] to make VR parameters for the
Monte Carlo codes Monaco [27] and MCNP[8], respectively. CADIS and FW-CADIS are also
available in Tortilla [63], which uses the hybrid methods software using the deterministic code
Attilla [64]. Tortilla also includes a version of LIFT and LIFT-based weight windows. The
Deterministic Adjoint Weight Window Generator (DAWWG) from Los Alamos National
Laboratory (LANL) [65] uses the adjoint solution from a deterministic solve in PARTISN
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[66] to generate biasing parameters for MCNP, and also includes AVATAR functionality.
MCNP [8] is distributed with a weight window generator (WWG) that uses a preliminary
Monte Carlo solution to estimate an importance function for the problem. Though this list
is not exhaustive, it illustrates the present ubiquity and need for hybrid methods to analyze
realistic problems. In the analysis of realistic problems, ensuring that a “good” answer is
achieved is necessary for safety and security. In the next few paragraphs, how and how
e↵ectively each of these methods have been applied to application problems is summarized.
The degree to which each is successful is also discussed.

CADIS and FW-CADIS have been used for a number of studies of spent fuel storage
facilities. Radescleu et al. used FW-CADIS in MAVRIC to calculate spent fuel dose rates
of a single dry cask with finely detailed geometry and spent fuel isotopic compositions [67].
Chen et al. used MAVRIC [27] to analyze dose rates on spent fuel storage containers [68].
The fueled region of the storage container was homogenized into an e↵ective fuel region.
They found that in a coarse energy group calculation (27G19N) MAVRIC underestimated
neutron dose rates at high energies. However, MAVRIC’s ability to generate importances
in three dimensions allowed it to have better problem-wide results, while the compared to
methods (SAS4) struggled generating satisfactory results in the axial direction. This was
demonstrated to a greater extent in an analysis of an independent spent nuclear fuel storage
installation (ISFSI) [69] by Sheu et al. The FOM achieved by MAVRIC appeared inferior
to those obtained with SAS4 or TORT/MCNP in a single cask. However, when applied
to a storage bed of 30 casks MAVRIC was able to generate VR parameters at all, which
were unfeasible for the other two methods. These studies demonstrated that CADIS and
FW-CADIS are desirable methods for which to obtain global and three-dimensional variance
reduction parameters for realistic problems.

ADVANTG [61], developed at ORNL [70, 35, 71] is a hybrid methods package for auto-
mated variance reduction of the Monte Carlo transport package, MCNP [11]. ADVANTG
uses the deterministic transport code Denovo [62] to perform the forward and adjoint calcu-
lations for CADIS and FW-CADIS. At its inception, ADVANTG was used to analyze various
threat-detection nonproliferation problems [61]. FOM improvements on the order of 102 to
104 when compared with analog Monte Carlo have been observed. However, Mosher et al.
noted that the methods struggled with problems exhibiting strongly anisotropic behavior.
In particular, they noted that low-density materials and strongly directional sources posed
issues. This indicated that while CADIS and FW-CADIS are very useful methods, they have
limitations in highly angle-dependent applications.

The deterministic adjoint weight window generator (DAWWG), utilizes the discrete or-
dinates code PARTISN [65] to generate space- energy- and angle-dependent weight windows.
It is an internal feature of MCNP. The angle-dependent weight windows are calculated with
the same methodology as AVATAR [65, 17]. Sweezy and colleagues compared DAWWG to
the standard MCNP WWG on an oil well logging problem, a shielding problem, and a dogleg
neutron void problem. The deterministic weight window generator obtained similar relative
errors as the standard WWG for the first two problems, but in a fraction of the time. How-
ever, for the dogleg void problem, which exhibited strong angular dependence in the neutron
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flux, the authors noted that DAWWG was not as e↵ective as the standard MCNP WWG.
This was attributed to ray e↵ects from the SN transport influencing the weight windows
obtained by DAWWG, which is not an issue for the standard WWG.

A variety of automated variance reduction methods, including CADIS and LIFT have
been implemented into the Attila / Tortilla deterministic and hybrid transport code packages
[63]. These methods were used on several nonproliferation test problems. For the most part,
LIFT and LIFT combined with weight windows outperformed CADIS’ weight windows and
source biasing, indicating that the addition of angular information was of benefit for these
more realistic nonproliferation application problems.

Peplow et. al. formulated an adjustment to CADIS in the ORNL code suite [52] to
incorporate angular information into the VR parameters (see Section 2.5.1.2. Two di↵er-
ent methods to generate weight windows and source biasing parameters were investigated:
CADIS with directional source biasing, and CADIS without directional source biasing. For
the method without directional source biasing, the biased source distribution matched that
of the original CADIS, but the weight window values were directionally-dependent. The
method with directional source biasing used the transform function to obtain directionally-
dependent weight windows and directional source biasing. Peplow and his colleagues found
that these methods generally increased the FOM by a factor of 1-5 as compared to traditional
CADIS, but in some cases decreased the FOM. This was attributed to the P1 approximation
used to calculate the angular flux, which limited the physical applicability of the method,
just as with AVATAR.

CADIS and FW-CADIS have shown to be the existing “gold standard” of local and
global variance reduction methods for large application problems, a selection of which were
described in the preceding paragraphs. These problems include active interrogation of cargo
containers [61], spent fuel storage casks [68, 67] and beds [69], and other nonproliferation and
shielding applications [63]. For additional applications, one may refer to [35]. In some of these
application problems, the parameters generated by CADIS or FW-CADIS were su�cient for
the problem application. However, for other problems that had strong angular dependence or
geometric complexity, the parameters were insu�cient [68, 63, 52]. This can be remedied with
additional angular information in the variance reduction parameters, such as LIFT [63], but
the benefits of consistent source biasing are lost in this case. Alternatively, the angular flux
can be reconstructed in a manner similar to AVATAR [65, 52] to generate angle-dependent
weight windows, but this approximates the angular flux to be linearly anisotropic in angle
(from the P1 reconstruction), and is also dependent on the deterministic flux not having ray
e↵ects [65].

Although numerous methods have been proposed and implemented to obtain adequate
angle-informed variance reduction parameters for application problems, they have limited
applicability, and determining in which problems they will be useful is not always straight-
forward. No single method has been successful for problems with all types of anisotropy,
and no existing angle-informed method captures the anisotropy in the flux without signifi-
cant approximation. For large-scale, highly anisotropic, deep-penetration radiation transport
problems, there exists a need for improvements in hybrid methods.


