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Abstract

FW/CADIS-Ω: An Angle-Informed Hybrid Method for Neutron Transport

by

Madicken Munk

Doctor of Philosophy in Engineering - Nuclear Engineering

University of California, Berkeley

Assistant Professor Rachel N. Slaybaugh, Chair

The development of methods for deep-penetration radiation transport is of continued
importance for radiation shielding, nonproliferation, nuclear threat reduction, and medical
applications. As these applications become more ubiquitous, the need for transport methods
that can accurately and reliably model the systems’ behavior will persist. For these types
of systems, hybrid methods are often the best choice to obtain a reliable answer in a short
amount of time. Hybrid methods leverage the speed and uniform uncertainty distribution
of a deterministic solution to bias Monte Carlo transport to reduce the variance in the
solution. At present, the Consistent Adjoint-Driven Importance Sampling (CADIS) and
Forward-Weighted CADIS (FW-CADIS) hybrid methods are the gold standard by which to
model systems that have deeply-penetrating radiation. They use an adjoint scalar flux to
generate variance reduction parameters for Monte Carlo. However, in problems where there
exists strong anisotropy in the flux, CADIS and FW-CADIS are not as effective at reducing
the problem variance as isotropic problems.

This dissertation covers the theoretical background, implementation of, and characteri-
zation of a set of angle-informed hybrid methods that can be applied to strongly anisotropic
deep-penetration radiation transport problems. These methods use a forward-weighted ad-
joint angular flux to generate variance reduction parameters for Monte Carlo. As a result,
they leverage both adjoint and contributon theory for variance reduction. They have been
named CADIS-Ω and FW-CADIS-Ω.

To characterize CADIS-Ω, several characterization problems with flux anisotropies were
devised. These problems contain different physical mechanisms by which flux anisotropy
is induced. Additionally, a series of novel anisotropy metrics by which to quantify flux
anisotropy are used to characterize the methods beyond standard Figure of Merit (FOM)
and relative error metrics. As a result, a more thorough investigation into the effects of
anisotropy and the degree of anisotropy on Monte Carlo convergence is possible.

The results from the characterization of CADIS-Ω show that it performs best in strongly
anisotropic problems that have preferential particle flowpaths, but only if the flowpaths are
not comprised of air. Further, the characterization of the method’s sensitivity to determin-
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istic angular discretization showed that CADIS-Ω has less sensitivity to discretization than
CADIS for both quadrature order and PN order. However, more variation in the results
were observed in response to changing quadrature order than PN order. Further, as a result
of the forward-normalization in the Ω-methods, ray effect mitigation was observed in many
of the characterization problems.

The characterization of the CADIS-Ω-method in this dissertation serves to outline a path
forward for further hybrid methods development. In particular, the response that the Ω-
method has with changes in quadrature order, PN order, and on ray effect mitigation are
strong indicators that the method is more resilient than its predecessors to strong anisotropies
in the flux. With further method characterization, the full potential of the Ω-methods can
be realized. The method can then be applied to geometrically complex, materially diverse
problems and help to advance system modelling in deep-penetration radiation transport
problems with strong anisotropies in the flux.
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Chapter 1

Introduction

This dissertation covers the development, implementation, and characterization of a novel
hybrid method for neutral particle, deep-penetration, steady-state, radiation transport in
highly anisotropic problems. The method generates a forward-weighted adjoint scalar flux,
which is then used to consistently generate variance reduction parameters for Monte Carlo
radiation transport. Because of the incorporation of directionality into the adjoint scalar
flux, the method has been named FW/CADIS-Ω. The name alludes to the lineage of the
method, which builds on the Consistent Adjoint-Driven Importance Sampling (CADIS) [1,
3, 4, 2], and Forward-Weighted CADIS (FW-CADIS) [5, 6] methods. This research both
develops a new method that can be used in problems with strong anisotropies and provides a
novel analytical framework by which to characterize anisotropy characteristics of problems.
This work advances the current state of hybrid methods and extends the availability of
alternate hybrid methods in existing software.

1.1 Motivation

Radiation shielding is a realm of continued importance for nuclear engineering, nuclear secu-
rity, and health physics applications. With the expansion of nuclear technology applications,
the potential proliferation of nuclear materials, and the continued development of nuclear
medicine, tools with which to predict the behavior of these systems are in ever-increasing
demand. Over the course of many decades, radiation transport methods have been developed
in two primary areas: stochastic (Monte Carlo) and deterministic.

These tools have the potential to be immensely powerful, but are not without their
drawbacks. Monte Carlo methods have the benefit of modeling transport that is continuous
in energy, space, and angle. A user can obtain results for any region in phase-space that
one might desire. However, Monte Carlo methods also require adequate sampling in order
to obtain a solution with sufficient precision. Adequate sampling depends on the number of
particles transported to the tally region. The more particles that are run in a problem, the
longer the computational time required. Depending on the complexity of the problem, this
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may be difficult, computationally demanding, very time consuming, or impossible.
Deterministic transport methods discretize the problem phase-space in space, energy, and

angle. They iteratively converge on a global problem solution that is equally valid across
the entire problem space, rather than a potentially localized tally location. Deterministic
solvers tend to be much faster than Monte Carlo methods, but also lose the continuity in
phase-space that is offered by Monte Carlo. Depending on the coarseness of the problem
discretization, features of interest in the particle flux may be incorrect, obfuscated, or missed
entirely.

Hybrid methods leverage the speed and uniform solution validity of deterministically-
obtained transport solutions to bias Monte Carlo transport to more effectively sample in
regions of interest. Biasing Monte Carlo to move particles to regions of interest more ef-
fectively is called variance reduction. Many existing implementations of hybrid methods
automate the variance reduction process to speed up the time to a desired solution or to
achieve a more uniform uncertainty distribution in the problem.

Hybrid methods have been designed for an assortment of applications, and none are
universally applicable to all problem types. In particular, hybrid methods are wanting for a
method well-suited for highly anisotropic, deep-penetration radiation transport applications.
The work presented herein endeavors to provide a potential solution for such applications.

1.2 Research Objectives

This dissertation addresses a number of research objectives. The primary research goal is
to:

• develop a hybrid method capable of generating variance reduction parameters for highly
anisotropic, deep-penetration radiation transport problems.

Several supporting objectives accompany this goal. They are:

1. Propose a hybrid method that capitalizes on a solid theoretical framework and lessons
learned from existing hybrid methods.

2. Implement the method in a software package such that it is transparent and repro-
ducible.

3. Devise a rigorous and consistent set of metrics with which to quantify method perfor-
mance.

4. Develop a suite of problems that have anisotropic behavior induced by the problem
physics with which to characterize the method.

5. Run the method and existing hybrid methods on the suite of problems. Using the
results obtained from these runs, compare the method’s performance to exiting hybrid
methods.
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6. Investigate the sensitivity of the method to other angular-flux perturbing parameters,
such as the angular discretization of the deterministic transport.

By addressing each of these objectives, the new method will be proposed, developed, im-
plemented, and characterized such that its behavior in different problems is well-understood
and the method is usable by interested parties that do not have the expertise of a developer
or the author.

1.3 Outline of the Dissertation

The next several chapters of this dissertation covers the relevant background, the pertinent
theoretical basis, and the numerical results that address the research objectives outlined
in Section 1.2. Chapter 2 provides a comprehensive background on the theoretical basis
on which Monte Carlo methods, deterministic radiation transport, and hybrid methods for
radiation shielding are founded. In so doing, it provides context for the existing gaps for
generating variance reduction parameters in highly anisotropic, deep-penetration radiation
transport problems. It further highlights the most effective hybrid methods that can be
applied to non-anisotropic, deep-penetration radiation transport problems.

The conclusion of Chapter 2 demarcates the transition from theoretical background work
to the novel contributions of this project. Building on the knowledge presented in Chapter
2, Chapter 3 presents an overview of the theoretical basis of the method developed in this
research. The theory contained in this chapter contributes to the larger body of hybrid
methods research. This chapter also covers the software used for this project, and how it was
modified to incorporate the novel theory presented herein. Next, Chapter 4 presents several
problems with which the method is to be characterized. The results from these problems
inform a parametric angle-informed study, presented in the latter portion of the chapter.
Finally, Chapter 5 draws from the results presented in Chapter 4 to discuss the performance
of the new method, summarize what was learned from the method characterization, and
suggest future paths forward for future hybrid methods research.
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Chapter 2

Literature Review

The following literature review aims to contextualize the work described in this dissertation
within the realm of hybrid methods for deep-penetration neutron transport. In doing so, the
pertinent theoretical information that is relevant to this topic is described. This description
is supplemented by a discussion of the various efforts to implement these methods for applied
problems, and the degree to which those efforts succeeded. First, a brief overview of variance
reduction for Monte Carlo radiation transport is described in Section 2.1. Then, Section 2.1.3
expands on the various efforts to automate variance reduction techniques in Monte Carlo.
Section 2.2.1 follows with an introduction of the concept of importance and how that relates
to variance reduction. This section also focuses specifically on how the adjoint solution of
the neutron transport equation relates to importance.

From this point, the chapter transitions from theory into existing implementations of
variance reduction techniques used in modern software in the nuclear engineering commu-
nity. Beginning in Section 2.3.1, a description of the consistent, adjoint-driven importance
sampling method, or CADIS, which has been optimized for variance reduction of local so-
lutions is presented. Next, Section 2.4 discusses the methods implemented to reduce the
variance for global solutions. This discussion includes a description of the forward-weighted
CADIS (FW-CADIS) method. The last section, 2.5, details the efforts to incorporate an-
gular information into variance reduction methods for Monte Carlo. Sections 2.3.1-2.5 are
each concluded with a description of the various software in which these methods have been
implemented and the degree to which they improved the variance reduction for their target
applications.

2.1 Monte Carlo Variance Reduction

Monte Carlo methods for radiation transport are used in the nuclear engineering commu-
nity for a wide spectrum of application problems. Monte Carlo methods aim to emulate
the transport of a particle from birth, through physical interaction, to death by randomly
sampling the probabilities of physics that the particle could encounter, e.g. particle produc-
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tion, elastic and inelastic scattering, absorption, and so forth. This process of transporting a
single particle is repeated many times, to simulate the transport of many particles through-
out the problem. When the user achieves a sufficient number of samples–or particles–to
reach the desired statistical precision for the region of interest, the simulation is complete.
However, this naive approach to simulating each particle–disregarding whether it is likely to
contribute to the tallied result–can be extraordinarily computationally inefficient depending
on the problem. A code could waste time simulating millions of “unusable” particles and still
not reach the desired statistical precision for the tally. Variance reduction techniques were
developed to address this issue. In general, these techniques bias the Monte Carlo transport
to more effectively contribute to a particular result, while not fundamentally changing the
nature of the problem being solved.

2.1.1 Statistical Background

Variance reduction techniques are rooted in statistics, so we begin our discussion of variance
reduction techniques with a brief primer on the statistical background relevant to Monte
Carlo radiation transport. Sections 2.1.1.1 through 2.1.1.3 are summarized from [7] and
[8]. Monte Carlo methods transport many randomly sampled particles, and when those
particles reach a region of interest, they are scored in a tally. The statistical precision of the
tally will reflect the total number of particles that were sampled in a chosen region or at a
chosen surface. The reliability of the answer obtained in this region is then dependent on
the quantity and the history of the particles sampled.

2.1.1.1 Population Statistics

In radiation transport, one desires to estimate some response in phase-space. This response
is the average behavior of the physical interactions in some differential phase-space in energy,
space, and time. If the probability density function, f(x), for the response is known exactly,
then the response in dx can be calculated exactly by the true mean, or

x̄ =

∫ ∞
−∞

xf(x)dx. (2.1)

Rarely is f(x) known exactly, so instead it is sampled. Using N randomly sampled particles,
the estimate of the true mean value is given as

x̂ =

∑N
i=1 xi
N

, (2.2)

where xi is the ith event. x̂ is the sample mean, or the estimated value of x̄ based on the N
number of samples that were used to calculate x̂. As N →∞, x̂ will → x̄, which is given by
the Strong Law of Large Numbers [8]. x̂ in itself is a useful measure, but determining the
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spread of values about x̂ is also an important measure. This is called the variance. The true
variance of the distribution is

σ2
(
x
)

= x̄2 − x̄2, (2.3)

and the standard deviation is the square root of the variance

σ
(
x
)

=
(
x̄2 − x̄2

)1/2
. (2.4)

The variance of the sampled distribution differs, as a finite number of samples are used to
calculate x̄ and σ. The sample variance is defined by:

S2 =
N∑
i=1

(xi − x̂)2

N − 1
∼= x̂2 − x̂2, (2.5)

where

x̂2 =
1

N

N∑
i=1

x2
i , (2.6)

and the sample standard deviation is given by

S =
(
x̂2 − x̂2

)(1/2)
. (2.7)

For (2.5) to hold true, the number of N samples must be large. S2 is the sample estimate
of the true variance, σ2. The variance of the estimate of the mean value about x̄ is:

S2
x̂ =

S2

N
. (2.8)

From (2.8), one can see the relationship between the sample standard deviation and the
standard error of x̂ about x̄ is

Sx̂ =

√
S2

N
=

S√
N
. (2.9)

Sx̂ is the standard error of the estimate of the sample mean. The relative error normalizes
the standard error by the estimate of the mean

R =
Sx̂
x̂
. (2.10)

As a result, S, R, and N follow the relationship

S2 ∝ R2 ∝ 1

N
. (2.11)
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2.1.1.2 The Central Limit Theorem

Suppose x̂ is calculated from several independent random particles to estimate x̄. At what
point does one conclude that x̂ sufficiently reflects x̄? The central limit theorem (CLT) [7,
8] is a very powerful supplement to the quantities described in Section 2.1.1.1. The CLT
states that for large N, x̂ will have a limiting distribution fN(x̂), and that distribution will
be a normal distribution

fN
(
x̂
)
≈ 1√

2πσ(x̂)
exp

[
−
(
x̂− x̄

)2

2σ2(x̂)

]
, N →∞. (2.12)

The standard deviation of x̂ can be related to the standard deviation of the samples by

σ(x̂) =
σ(x)√
N
. (2.13)

Using the definition from Eq. (2.13) in Eq. (2.12) results in

fN
(
x̂
)
≈
√

N

2 ∗ π
1

σ(x)
exp

[
−N

(
x̂− x̄

)2

2σ2(x)

]
, N →∞. (2.14)

This allows us to use known values for x̂ and an approximation of σ(x)–using S–to determine
the probability density function of the sample means fN(x̂). Because fN(x̂) is normally
distributed, we can find the probability that x̂ lies in x̄± ε with

P
{
x̄− ε < x̂ ≤ x̄+ ε

}
=

∫ x̄+ε

x̄−ε
fN
(
x̂
)
dx̂. (2.15)

Placing our definition for the distribution of x̂, which is fN(x̂), into Eq. (2.15), changing the
limits of integration, and changing the variables such that

t =
√
N/2

[
(x̂− x̄)/σ(x)

]
,

this becomes

P
{
x̄− ε < x̂ ≤ x̄+ ε

}
=

2√
π

∫ (
√
N/2)(ε/σ(x))

0

e−t
2

dt . (2.16)

Recalling the definition of the error function, Eq. (2.16) becomes

P
{
x̄− ε < x̂ ≤ x̄+ ε

}
= erf

[√N

2

ε

σ(x)

]
. (2.17)

Then, using the calculated estimation for σ(x) (S), and also recalling that Sx̂ = S/
√
N (Eq.

(2.9)), the error function reduces to a function of ε and Sx̂, or:

erf
[√N

2

ε

σ(x)

]
= erf

[√1

2

ε

Sx̂

]
. (2.18)
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Should ε be chosen to be a function of Sx̂, the error function reduces further and becomes
merely an evaluation as multiples (M) of Sx̂ and

√
1/2. For the first few multiples of the

standard error, this is evaluated as

P
{
x̄−MSx̂ < x̂ ≤ x̄+MSx̂

}
=


.683, M = 1,

.954, M = 2,

.997, M = 3

. (2.19)

The central limit theorem tells us that the sample mean follows a normal distribution,
regardless of the distribution of the underlying sample, as the number of samples approaches
infinity. This means that no matter what distribution is being sampled, the sampled mean
will have this expected behavior. As a result, given a calculated value for x̂ and S, the
probability that x̂ is near x̄ is known and calculable. Further, the central limit theorem
shows that this distribution is approached very quickly as N increases, with most problems
only requiring N > 30 [7]. Note that N is not the total number of samples, but the number
of samples required to calculate each mean.

However, for the central limit theorem to hold a number of requirements must be satisfied.
All of the quantities in Section 2.1.1.1 have the underlying assumption that each xi is assumed
to be randomly sampled and independent of other xi. If some region of phase space is omitted
accidentally, these values will not be reflective of the true f(x), and so x̂ will not approximate
x̄. Further, for S to be a good approximation of σ(x), a large number of N samples must
contribute to the calculation of x̂. The central limit theorem also assumes that f(x) is a
probability density function that can be sampled and has a variance that exists. As a result,
one must be reasonably sure that all of these requirements are satisfied if using Monte Carlo
sampling methods.

2.1.1.3 The Figure of Merit

The equations in the preceding sections describe how to estimate the statistics of a population
given a finite number of samples. In radiation transport, a user seeks to estimate some
response, the relative error associated with that response solution, and the time it takes to
obtain those values. Equation (2.11) described the relationship between the sample variance,
the relative error, and the number of particles as

S2 ∝ R2 ∝ 1

N
.

The relationship between the relative error, R, and the number of particles, N , (recall that
R2 ∝ 1

N
) will be some constant value (C):

C1 = R2N.

As a problem is simulated, the number of particles run, N , will increase proportionally to
the computational transport time, T . Therefore, the relationship between R and T should
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also be a constant.
C2 = R2T

The figure of merit (FOM) shown in Eq. (2.20) is the most commonly reported metric using
this relationship that is reported. It is widely used in quantifying the effects of variance
reduction methods. Because it uses the inverse quantity of the relative error and time, a
“good” result would be obtained from a low relative error in a short amount of time, resulting
in a FOM with a high numerical value.

FOM =
1

R2T
(2.20)

Further, a user may desire to determine how long a problem must be run to obtain a desired
relative error. In that case, Eq. (2.20) can simply be rearranged to

R =
1

(FOM ∗ T )1/2
.

The figure of merit is a very useful tool, but it is limited by statistical precision in calcu-
lating R. It is worth noting that early on in a transport simulation, when too few particles
have been simulated to effectively capture S or x̂, the FOM will oscillate. Eventually, the
FOM will converge to a relatively constant value. This behavior can also be used to de-
termine whether one has sufficiently sampled the region in which they are quantifying the
response.

2.1.2 Variance Reduction Methods for Monte Carlo Radiation
Transport

Now that the different parameters that affect the variance in a problem have been introduced,
let us transition to different variance reduction techniques that are available in Monte Carlo
radiation transport packages. Variance reduction techniques in radiation transport methods
fall into four general categories: truncation methods, population control methods, modified
sampling methods, and partially-deterministic methods. Of importance for this project are
population control methods and modified sampling methods, which are discussed in a number
of the papers referenced herein. Truncation methods and partially-deterministic methods do
not contribute to and are not the focus of this work, so will only be touched upon briefly.

A later section (3.3) of this dissertation will discuss the choice of software packages used
for this project. In particular, our hybrid methods software package is designed to accelerate
the Monte Carlo radiation transport package MCNP [10, 9, 8]. Variance reduction methods
are available in a number of other Monte Carlo radiation transport packages, and are by
no means limited to a particular code. However, the implementation of methods differs
between software and the specifics may differ slightly. The discussion for the remainder of
this subsection will be centered around the specifics of the code used for this project.
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Figure 2.1: Cartoon illustration of a weight window, adapted from [9, 11]

Population Control Methods

Population control methods adjust the particle population in the problem to obtain bet-
ter sampling in regions of interest by preferentially increasing or decreasing the particle
population. The first two types of population control methods that will be discussed are
called splitting and rouletting. Splitting is a method by which the particle population can
be increased by splitting a single higher-weight particle into several lower-weight particles.
Rouletting, conversely, reduces the particle population by stochastically killing particles.
Particles that survive a rouletting routine have their weight adjusted higher, thereby con-
serving weight in the routine. Both splitting and roulette maintain a fair game by adjusting
the particle weights as each routine is performed; statistically, the sum of the child particle
weights is the same as the parent weight as it entered the routine.

To use population control methods effectively as a variance reduction technique, splitting
is performed in high-importance regions to increase the particle count, and thus the sampling,
in important regions. Conversely, rouletting is performed in low-importance regions to reduce
the particle population in regions that are unimportant to the tally result. Splitting and
rouletting can be applied to include geometry, energy and time.

The weight window combines splitting and rouletting to keep particles within a desired
weight range. Figure 2.1 illustrates the different processes a particle may go through when
passing through a weight window. The top particle entering the weight window is a single,
high-weight particle. The weight of this particle is above the weight window bounds, so as it
enters the weight window it is split into multiple particles whose weight is within the window
bounds. The second particle entering the window is within the weight window bounds, so it
retains its weight and is not split or rouletted. The last two particles entering the window
have weights lower than the bound. They undergo a rouletting routine and one particle is
killed and the surviving particle is increased in weight. As these particles leave the window,
all of them have weights within the range of the window. This will reduce the variance of
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the particles contributing to a tally in that region.
While the use of weight windows in a problem helps to keep a more ideal distribution

of particle weights, the user is faced with calculating a significant number of parameters
to determine weight windows for the entire problem. In the best case with an experienced
user, this may just take time. With an inexperienced user or a complex problem this can be
insurmountable, and may be too difficult to do without some automated assistance.

It should be noted that while splitting and rouletting can be performed on a single
variable–angle, energy, space, or time–the weight windows generally used are either energy-
space dependent or space-time dependent. Further, the weight window will split or roulette
depending on the particle weight entering the window. Splitting and rouletting on their own
either increase or decrease the particle weight proportional to the ratio of cell importances,
or I ′/I, no matter what the entering particle weight is. As a result, poorly chosen splitting
or rouletting parameters can still have significant tally variance, because particle weights
may still span a wide range.

Modified Sampling Methods

Modified sampling methods adjust transport by sampling from a different probability dis-
tribution function than the actual distribution for the problem. This is possible if, as with
population control methods, the particle weights are adjusted accordingly. The new proba-
bility distribution function should bias particles in regions of high importance to the problem
tallies. In MCNP, a number of modified sampling methods exist. These include the expo-
nential transform, implicit capture, forced collisions, source biasing, and neutron-induced
photon production biasing.

The exponential transform modifies particle transport from the analog problem by arti-
ficially modifying the macroscopic cross section, and thus the distance-to-collision, to move
particles in important directions. In directions of higher importance, the cross section is
reduced, and particles can flow more freely. In directions of lower importance, the cross sec-
tion is increased, and particles more frequently interact, thereby increasing their probability
of directional change or absorption. The transformed cross section used by the exponential
transform is defined by

Σ∗t = Σt(1− pµ), (2.21)

where Σ∗t is the transformed total cross section, Σt is the true total cross section, p is the
transform parameter, and µ is the cosine of the angle between the preferred direction and
the particle’s transport direction [8, 11, 10].

Because the particle’s transport is adjusted in the exponential transform, the particle
weight must be adjusted accordingly. This is given by

w∗ =
Σte

−Σts

Σ∗t e
−Σ∗t s

=
e−ρΣtµs

1− pµ
,
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where s is the phase space of particle residence. This weight adjustment ensures that the
particle weight is conserved throughout transport, even as the cross section is altered. Be-
cause the cross section in the problem is both energy and material dependent (depending
on the geometry), the exponential transform will be dependent on space and energy, and
particles will be biased in both. While a powerful method, the exponential transform is
quite difficult to use and if p is ill-chosen this method can perform quite poorly. Further, the
user has to know quite a bit about the problem physics and material to choose an optimal
quantity for p.

Source biasing, rather than preferentially adjusting particles’ directionality by way of
adjusting the cross sections, biases particles from their origin. Source biasing has the option
to bias particles in energy, direction, and space (if the source is volumetric). This allows
the user to choose importance separately for each variable. First, the source variable (let
us consider energy for the moment) is defined as a series of bins or a function. Second, the
bins are assigned probabilities of occurrence according to their importance. An energy bin
with a high importance will be assigned a high probability of occurrence, and a bin with low
importance will be assigned a low probability of occurrence. As particles are born in the
bins with higher importances, they will have their weights adjusted to the inverse of their
probability of occurrence, or w∗ = p/p∗. Here p refers to the probability density function for
the source particles; it bears no relation to the exponential transform factor.

Source biasing is a very simple method that can reduce the solution variance significantly.
However, if a user chooses bin sizes or a function that does not properly reflect the particles
importances in the problem, the source will be poorly sampled. As a result, sampling may
be very inefficient and the figure of merit will decrease. In MCNP, if poor parameters are
chosen for this method, the user is given a warning.

Truncation Methods

Truncation methods stop tracking particles in a region of phase-space that is of low-importance
to the tally. These methods can be used in space (a vacuum boundary condition), energy
(eliminate particles above or below a specified energy), or time (stop tracking after a given
time). To effectively use these methods, the user must be aware of particles’ importance to
a tally result. If particles that are important to a result are eliminated with a truncation
method, the tally will lack the contribution from that particle’s phase-space, and will be un-
derestimated as a result. Further, as discussed in Section 2.1.1.2, the central limit theorem
only holds assuming that the histories tracked are independent and drawn from identical
distributions. Truncating particles of high importance removes the independence from the
sampling and modifies the underlying PDF being sampled, so the estimate of the response
will be wrong.

It is important in using any variance reduction technique to ensure that a fair game is
being played. The user must ensure that the fundamental nature of the problem is not being
changed by using a variance reduction technique, or the answer will not be representative
of the original problem. Automated variance reduction techniques aim to eliminate this
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uncertainty for the user by estimating the importance of particles in some way and then
setting up variance reduction parameters automatically. The remainder of this chapter
review will focus on efforts to automate population control methods and modified sampling
methods for variance reduction.

2.1.3 Automated Variance Reduction Methods for Monte Carlo
Radiation Transport

Section 2.1.2 described some methods that one may use to reduce the variance in Monte Carlo
radiation transport tallies. These methods, if used correctly, can significantly increase the
transport efficiency in a Monte Carlo simulation. However, correct use of these methods often
requires intelligent selection of variance reduction (VR) parameters, which is a non-trivial
task. Users have found themselves often performing several trial runs before choosing final
quantities for the VR parameters in their problems, which was computationally inefficient
and required significant knowledge of Monte Carlo and variance reduction to execute well
[12].

This has been addressed by using Monte Carlo to sample the problem in an initial calcu-
lation to determine more favorable variance reduction parameters automatically. Booth and
Hendricks, recognizing that choosing optimal weight window values for energy- and space-
dependent weight windows was difficult even for experienced users, proposed two tools for
Monte Carlo variance reduction in parallel. The first was a Monte Carlo importance gener-
ator [12] that could be used to make informed decisions on cell importances throughout the
problem. The second method, a Monte Carlo generated weight window generator, calculates
the weight window values automatically for a given problem [13]. The importance generator
estimates a cell’s importance by tracking the weights of the particles in the cell, or

Importance =
score of particles leaving the cell

weight leaving the cell
. (2.22)

The weight window generator calculates weight window values with

Wi,low =
1

kN

(
ΣWi,in + ΣWi,out

)
(2.23a)

Wi,high =

{
k ∗Wi,low if Wi,low 6= 0

∞ if Wi,low = 0
, (2.23b)

where Wi,low and Wi,high are the weight window lower and upper weight bounds respectively,
Wi,in and Wi,out are the total weight entering and leaving the cell, N is the number of source
particles, and k is some weight window width (a constant that Hendricks set to 5).

In his paper, Booth notes that the weight window target value derived from the impor-
tance generator was chosen so that the track weight times the expected score in the tally
region (for unit track weight) was approximately constant. Booth’s importance generator
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saw improvements in the FOM between 1.5-8x when compared to the analog run for the test
problem presented.

Booth and Hendricks combined these two methods to automate weight window genera-
tion based on phase-space importance [14, 15]. They showed that the combination of the
importance estimator and the weight window generator was a successful way to perform
variance reduction in deep-penetration problems. However, their method depended on sev-
eral iterations of importance-determining runs to obtain a satisfactory estimation of the
importance. For a 300 cm slab problem, the FOM was increased from 1.9 to 75, but took
10 subsequent runs to obtain the FOM of 75, and these runs ranged from 1.2 min (for the
analog problem) to 42 minutes (for the 9th run [15]).

It should be noted that both the importance generator and the weight window generator
use a lower-fidelity Monte Carlo run to gain an initial estimate for a cell’s importance and
generate variance reduction parameters from them to bias a more computationally-intensive
and higher-fidelity run. Naturally, the variance reduction parameters generated by using
these techniques are limited by the statistical precision in the regions used to generate them.
Hendricks also pointed out that the weight window generator tended to populate all regions of
phase space equally, which he conceeded was not ideal for all problems [13]. Furthermore, for
deep-penetration particle transport, the variance reduction parameters for low flux regions
are exceedingly difficult to generate, resulting in unfavorable VR parameters.

The MCNP [8, 9] weight window generator has been extended beyond the initial space-
and energy-implementation described in Booth’s paper. It now has the ability to auto-
matically generate space- energy- and angle-weight windows. The importance generator in
MCNP also has been extended to time-importance; the values of which can be used for
splitting or rouletting parameters [9], and can be optimized on a grid independent from the
MCNP geometry [16].

As with Booth and Hendricks’ original implementations, this updated weight window
generator still relies on adequate sampling to obtain sufficient weight window parameters.
When additional degrees of freedom, like angle-dependence, are added, the time to converge
on those parameters takes even longer. The weight window generator also only allows for a
single tally to be optimized at once, so multiple tallies cannot be optimized simultaneously.
Finally, the weight window generator still requires user input and updating to seed the weight
window solution. The user must choose the meshing of the problem and have some intuition
as to how the problem should be subdivided. In the paper by Van Riper et al, it was found
that depending on user experience, the weight window generator can have differences in the
FOM from 2 to 10 times [17] for the problems that they investigated.

2.2 Importance Functions for Variance Reduction

The effective use of variance reduction techniques can lead to a faster time to a desired
solution and a reduced variance in the specified tally. However, specifying variance reduction
parameters is not always a straightforward procedure. In simple geometries, a user might
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intuitively understand which regions of a problem may contribute more to a desired solution,
but for more complex geometries, this may not be so obvious. In the following subsections,
the theory in determining which regions of a problem are important to eliciting a tally
response will be described. The first topic discussed will be the concept of importance and
obtaining a measure of importance with Monte Carlo sampling. Second, the adjoint equation
and its relation to importance will be introduced. Last, the contributon solution and how
its relation to tally responses is reviewed.

2.2.1 The Concept of Importance

The concept of importance is, in essence, a means of defining which regions of a problem that
are likely to contribute to a response and which are less likely to contribute to a response.
The regions that are more likely to generate a response will have a higher importance than
those that do not. If an importance function for a system can be obtained computationally,
that importance function can be strategically used in variance reduction techniques to speed
up the Monte Carlo calculations.

As described in Section 2.1.3, Booth [12] proposed a method to quantify a cell’s im-
portance within a Monte Carlo simulation (Eq. (2.22)). In this method, Booth suggested
estimating the cell’s importance using Monte Carlo transport as:

Importance =
score of particles leaving the cell

weight leaving the cell
.

This particular calculation of importance follows from the intuitive explanation for impor-
tance in the preceding paragraph. Recall from Section 2.1.2 that in variance reduction
methods, the population of particles is increased in important regions such that the number
of samples or particles contributing to a tally increases, but the total problem weight is
conserved. More important regions should have many lower-weight particles to reduce the
tally variance. Using Booth’s bookkeeping method for estimating regional importance, if
a cell has a greater weight leaving the cell than the number of particles, that means that
the relative contribution of that cell to the tally is likely to be lower than other regions. If,
instead, the number of particles leaving the cell is greater than the weight leaving the cell,
then that region is more important to the tally response, because that particle population is
higher than other cells.

While this estimation of the importance requires only a Monte Carlo forward calcula-
tion of the problem, it was referred to as the forward-adjoint importance generator [12, 14,
15] because the bookeeping tracked by Eq. (2.22) was a forward-approximation of the ad-
joint. Adjoint theory and how it relates to importance will be discussed in Section 2.2.2.
Booth’s estimation of importance was used to generate weight window target values inversely
proportional to the importance. In this case, the track weight times the expected score is ap-
proximately constant in the problem. Choosing this inverse relationship between the weight
window and importance is common practice in variance reduction, and is often a good choice
because it is nearly optimal over a broad range of a problem phase-space [18].
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It should be noted that Booth’s method is reliant on the statistical precision of the cells
sampled to generate their importances. For deep-penetration problems, obtaining a “good”
estimate of the cell importances many mean free paths from the forward source takes several
iterations. With large fluctuations between iterations, this has the potential to be a very
slow and computationally inefficient way to calculate importance in a problem. Using a
solution of the adjoint that is equally valid across all of the problem space is more ideal for
deep-penetration problems.

2.2.2 The Adjoint Solution for Importance

Using the solution of the adjoint formulation of the neutron transport equation is one of
the most widely recognized methods for generating an importance function. This subsection
will begin with a brief summary of adjoint theory. A discussion on how the adjoint solution
differs physically from the forward solution for a particular problem follows. Last, some early
investigations on how the adjoint and importance are related are summarized.

2.2.2.1 Theory

In previous sections we have reviewed the statistical precision of Monte Carlo-based meth-
ods, and how sampled results in Monte Carlo can be obtained in less time with variance
reduction methods. We have also briefly addressed the forward and the adjoint solutions for
a particular problem. In neutron transport, the integral form of the forward, steady-state,
particle transport equation can be defined as:

Ω̂ · ∇ψ(~r, E, Ω̂) + Σt(~r, E)ψ(~r, E, Ω̂) =∫
4π

∫ ∞
0

Σs(E
′ → E, Ω̂′ → Ω̂)ψ(~r, E ′, Ω̂′)dE ′ dΩ̂′ + qe(~r, E, Ω̂), (2.24)

where ~r, E, and Ω̂, are direction, energy, and angle, respectively, giving six dimensions
of phase-space in total. ψ is the neutron flux, Σ is the neutron interaction (scattering,
absorption, total) cross section, and qe is the external fixed source. Alternatively, this can
be written in operator form,

Hψ = qe , (2.25)

where H represents the streaming, scattering, and absorptive terms from Eq. (2.24), ψ is
the angular flux as it is in Eq. (2.24), and qe is the source term.

The forward transport equation tells us where particles are moving throughout the sys-
tem. Of note: the particles move in the scattering term from E ′ into E, and from Ω̂′ into Ω̂.
Therefore, for a particular problem with a given qe, particles start at qe and move throughout
the system, either downscattering in energy, streaming out of the problem, absorbed by the
problem materials, or induce a response at the tally location.



CHAPTER 2. LITERATURE REVIEW 17

The adjoint equation of the same form, in contrast, can be expressed as:

− Ω̂ · ∇ψ†(~r, E, Ω̂) + Σt(~r, E)ψ†(~r, E, Ω̂) =∫
4π

∫ ∞
0

Σs(E → E ′, Ω̂→ Ω̂′)ψ†(~r, E ′, Ω̂′)dE ′ dΩ̂′ + q†e(~r, E, Ω̂), (2.26)

or in operator form as
H†ψ† = q†e, (2.27)

where the variables with † signify the adjoint-specific variables for the problem: the adjoint
flux ψ† and the adjoint source q†e. Note here that the particles in the adjoint equation move
from E into E ′, and from Ω̂ into Ω̂′, which indicates an upscattering in energy and a reversal
of direction when compared to the forward problem. The external source, too, is different,
changing from qe to q†e.

To solve the adjoint problem the adjoint source, q†e, can be chosen such that it has the
potential to reveal information about the forward problem. In MC variance reduction, we
seek to obtain information on the detector or tally response for the system. The response
for the forward problem given a defined source distribution q(~r, E, Ω̂) is

Rtally =

∫
4π

∫
V

∫
E

ψ(~r, E, Ω̂)Σtally(~r, E, Ω̂)dEdV dΩ̂, (2.28a)

where dE dV and dΩ are the differential spaces of energy, volume, and angle in the tally
region. This can be simplified using bracket notation, where the brackets indicate an inte-
gration over all phase-space,

Rtally = 〈ψΣtally〉. (2.28b)

ψ is the angular flux and Σtally is the effective tally response function.
For a simple source-detector problem, we choose q†e to be Σtally; or the adjoint source is

the tally/detector response function for the system. Therefore, the adjoint particles start
at low energy at the detector location, move away from the adjoint source (the detector
location), and scatter up in energy. By making the choice that q†e = Σtally, the response
function can be written as a product for the forward flux and the adjoint source

Rtally = 〈ψq†〉. (2.29)

By using the adjoint identity and the same operators H from Eqs. (2.25) and (2.27)

〈ψ,H†ψ†〉 = 〈ψ†, Hψ〉. (2.30)

Eq. (2.29) can be written as a function of the adjoint flux and the forward source distribution

R = 〈ψ†q〉. (2.31)

At this point, we know that the solution to the adjoint problem transports particles from
the adjoint source (which is the detector or tally location) into the problem phase-space. The
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adjoint particles are upscattered in energy and are transported in −Ω relative to the forward
problem. However, it may not be immediately obvious how this adjoint solution relates
to importance for the forward solution. Let us start with a simple illustrative example: a
monoenergetic, monodirectional, point source. The forward source takes the form of a delta
function:

q(~r, E, Ω̂) = δ(~r − ~r0)δ(E − E0)δ(Ω̂− Ω̂0).

Using this definition of the forward source and evaluating Eq. (2.31), we obtain

R = 〈ψ†q〉

=

∫
V

∫
E

∫
Ω

ψ†(~r, E, Ω̂)q(~r, E, Ω̂)dΩ̂dEdV

= ψ†(~r0, E0, Ω̂0).

This result shows that the solution to the adjoint equation is the detector response for
the forward problem. As a result, the adjoint flux can be used as an indicator of a particle
produced in ~r, E, Ω̂ contributing to a response in the system. This indicator can be thought
of as the particle’s importance to achieving the tally or response objective. Consequently, it
is often said that the adjoint is the importance function for the problem.

The adjoint solution is used in nuclear engineering for a number of applications, including
reactor physics and perturbation theory [19, 21, 20, 22]. However, Goertzel and Kalos’ early
work recognized its application for deep-penetration radiation shielding. Goertzel and Kalos
[23] showed analytically that the exact adjoint solution, if used as an importance or weighting
function for the forward Monte Carlo calculation, will result in a zero variance solution for
the forward Monte Carlo problem. Further, Kalos [24] showed in a 1D infinite hydrogen slab
problem that an analytically-derived adjoint importance function significantly improved the
speed to convergence for neutron transport in deep-penetration problems.

Goertzel and Kalos’ finding that an exact adjoint can lead to a zero variance solution
means that if a single particle is transported with the adjoint weighting function, its score
will be the same as the total system response. Only a single particle is required to get
an exact solution for the forward problem. This is prohibitive because obtaining an exact
adjoint solution is just as computationally expensive as getting an exact forward solution.
Instead, one seeks to obtain a good, but fairly inexpensive, estimate of the adjoint solution
based on computational limitations. A good importance estimate should help reduce the
variance in a reasonable amount of time and be relatively computationally inexpensive.
A Monte Carlo solution can provide a continuous solution over the problem phase-space.
However, as discussed in Section 2.1.2, the quality of this adjoint solution relies on the
number of samples used to calculate it and that may take a significant amount of time. A
deterministic solution has the potential to offer equal or better solution confidence across the
entire problem. However, it is discretized in space, energy, and angle. For deep-penetration
importance functions, we opt for deterministically-obtained solutions due to the solution’s
equally distributed validity.
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2.2.2.2 Implementation

Coveyou, Cain, and Yost [25] expanded on Goertzel and Kalos’ work by interpreting in which
ways the adjoint solution could be adapted for Monte Carlo variance reduction. In particular,
they investigated the choice of biasing schemes and how effective they were at variance
reduction for a simple one-dimensional problem. They reiterated that the adjoint solution is
a good estimate for importance, but should not be calculated explicitly, and rather estimated
by a simpler model. The adjoint function is not necessarily the most optimal importance
function; however, it is likely the closest and most obtainable estimate of importance that
can be calculated [25]. They concluded that source biasing by the solution to the adjoint
equation or by the expected response is the best choice for Monte Carlo variance reduction,
as it can be used independently from any other variance reduction technique, and provides
good results.

Tang and Hoffman [26] built off of the parameters derived by Coveyou et al. [25] to
generate variance reduction parameters automatically for fuel cask dose rate analyses. In
their work, Tang and Hoffman used the 1D discrete ordinates code XSDRNPM-S to calculate
the adjoint fluxes for their shielding problems. The results from this calculation were then
used to generate biasing parameters for Monte Carlo; specifically, they aimed at generating
parameters for energy biasing, source biasing, Russian roulette and splitting, and next event
estimation probabilities. They implemented their work in the SAS4 module in SCALE [27]; it
was one of the earlier implementations of a fully-automated deterministic biasing procedure
for Monte Carlo.

2.2.3 The Contributon Solution for Importance

Contributon theory is another useful concept that can be used as a measure of importance [28,
29, 30]. However, contributon theory quantifies importance differently than adjoint theory.
In contributon transport, a pseudo-particle, the contributon, is defined. The contributon
carries response in the problem system from the radiation source to a detector. The total
number of contributons in a system are conserved by the contributon conservation principle:
all contributons that are emitted from the source eventually arrive at the detector. Much of
the work in this realm has been done by Williams and collaborators [28, 29, 30].

The contributon transport equation can be derived in a form analogous to the forward
(Eq. (2.24)) and adjoint (Eq. (2.26)) equations. The derivation of Eq. (2.33) and its
corresponding variables is available in a number of the sources referenced in this section,
so we will abstain from re-deriving it here. The angular contributon flux is defined as the
product of the forward and adjoint angular fluxes:

Ψ(~r, E, Ω̂) = ψ†(~r, E, Ω̂)ψ(~r, E, Ω̂) . (2.32)
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The contributon transport equation is:

Ω̂ · ∇Ψ(~r, E, Ω̂) + Σ̃t(~r, E, Ω̂)Ψ(~r, E, Ω̂) =∫
4π

∫ ∞
0

p̃(~r, Ω̂′ → Ω̂, E ′ → E)P̃ (~r, Ω̂′, E ′)Σ̃t(~r, E
′, Ω̂′)Ψ(~r, E ′, Ω̂′)dE ′ dΩ̂′ + p̂(~r, E, Ω̂)R.

(2.33)

The units of phase-space are the same as observed in the forward and adjoint transport
equations. The symbols decorated with tildes denote variables that are unique to the con-
tributon equation; p̃ and P̃ are both probability functions related to scattering and Σ̃ are
effective cross sections. The effective cross sections are given by:

Σ̃t(~r, E, Ω̂) = Σ̃s(~r, E, Ω̂) + Σ̃a(~r, E, Ω̂)

=

∫∫
Σs(~r, Ω̂

′′ · Ω̂, E → E ′′)ψ†(~r,Ω′′, E ′′)dΩ′′dE ′′

ψ†(~r, E, Ω̂)
+
Q†(~r, E, Ω̂)

ψ†(~r, E, Ω̂)
.

(2.34)

Note here that the effective scattering and absorption cross sections are adjoint flux-dependent.
Where the adjoint flux becomes small, the interaction probabilities will become large. As
a result, regions where the adjoint flux is high interaction probabilities become low, caus-
ing fewer interactions and more streaming. Conversely, regions with low adjoint fluxes–like
the problem boundary–will have a very high cross section, thus encouraging particle trans-
port back towards the adjoint source. This increased probability of interaction in low flux
regions encourages response particle (contributon) transport towards the detector or tally,
thus contributing to a response.

The scattering probability of a contributon at position ~r, E ′, and Ω̂′ is:

P̃ (~r, Ω̂′, E ′) =
Σ̃s(~r, E

′, Ω̂′)

Σ̃t(~r, E ′, Ω̂′)
, (2.35)

and the probability that a contributon scattering at ~r, E ′, and Ω̂′ will scatter into dΩ̂ dE is

p̃(~r, Ω̂′ → Ω̂, E ′ → E) =
Σs(~r, Ω̂

′ · Ω̂, E ′ → E)ψ†(~r, E, Ω̂)∫∫
Σs(~r, Ω̂′ · Ω̂′′, E ′ → E ′′)ψ†(~r, E ′′, Ω̂′′)dΩ̂′′dE ′′

. (2.36)

The distribution function governing the contributon source is

p̂(~r, E, Ω̂) =
ψ†(~r, E, Ω̂)Q(~r, E, Ω̂)∫ ∫ ∫

ψ†(~r′, E ′, Ω̂′)Q(~r′, E ′, Ω̂′)dΩ̂′dE ′dV ′
, (2.37)

note that the contributon source is actually defined in Eq. (2.33) by the product of p̂ and R.
R is contributon production rate; it is given by integral of the adjoint flux and the forward
source

R =

∫ ∫ ∫
ψ†(~r, E, Ω̂)Q(~r, E, Ω̂)dΩ̂dEdV

= 〈ψ†Q〉
, (2.38)
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which is recognizable as the system response described in Section 2.2.2. It can also be shown
by integrating Eq. (2.33) over all phase space and ensuring that the function p̂ is normalized,
that

R = 〈Σ̃aΨ〉, (2.39)

or the rate at which contributons die in the detector is the same as the rate at which they
are produced by the contributon source. Knowing that R is the contributon production rate,
let us consider the probability that a particle will be absorbed in the detector, or P , given
by

P = 〈Σaψ〉. (2.40)

Adding a factor of ψ†/ψ† to the terms on the right hand side, this becomes

P =
〈Σa

ψ†
ψψ†

〉
. (2.41)

By using the identities from the contributon equation, this is also

P = 〈Σ̃aΨ〉. (2.42)

Next, substituting the definition from Eq. (2.39) into this equation, it follows that

P = R. (2.43)

This is the same contributon conservation principle introduced at the beginning of this
section. Williams noted that one could go so far as to transport contributons rather than
real particles with Monte Carlo. Because every particle transported would eventually reach
the detector and give an exact value for R (as shown by Eq. (2.43)), this would lead to a
zero variance solution. However, the nature of solving the contributon equation with Monte
Carlo (or any other transport mechanism) involves knowing the exact solution to the adjoint
equation, and so relies on the same computational obstacles as solving the adjoint transport
equation.

As mentioned in the previous section, the adjoint flux is an indicator of a particle’s
importance to inducing a response. Conversely, the contributon flux describes the importance
of a particle to the solution. Becker’s thesis [31] aptly points out that this is illustrated most
dramatically in a source-detector problem, where the forward source has little importance to
the adjoint source, but does have importance to the problem solution. As a result, both the
contributon solution and the adjoint solution can be considered importance functions for a
problem, but the importance that they describe differs.

Williams recognized the applications of contributons to shield design and optimization
in an extension of contribution theory called spatial channel theory. In particular, Williams
noted that variables relevant to contributon response were useful in determining transport
paths through media [30, 32]. A study of different contributon values throughout the system
could enlighten users on regions with higher response potential. This could then be used to
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intelligently choose regions for detector locations or add to shielding. The contributon values
in this theory include the contributon flux, the contributon density, the contributon current,
or the contributon velocity [33]. In this way, the user could find the particles most influential
to the response of the system. A region with high response potential is the most important to
a detector tally. The variables of response described by Williams are the response potential,
the response current, and the response vorticity [29].

Contributon theory and spatial channel theory have been applied successfully to shielding
analyses [34, 32] due to their ability to show particle flow between a source and response
effectively. Williams and Engle showed that spatial channel theory can be used in reactor
shielding analyses. In their work, they used contributon currents to determine preferential
flow paths through the Fast Flux Test Facility (FFTF) [32]. Seydaliev [34] used angle-
dependent forward and adjoint fluxes and currents to visualize the contributon flux for
simple source-detector problems. In this work, he showed that contributon flow in the
system behaves much like a fluid between the source and detector, following preferential
flow paths more densely. Seydaliev also observed ray effects in the contributon flux for high
energy photons, and traditional methods like using a first collision source, did not remedy
the issue. The contributon formulation of particle transport can show important particle
flow paths between a source and a detector, but it is still not immune to computational
obstacles that exist for standard forward- and adjoint- transport.

The past few subsections have described the different means by which importance can be
defined or quantified for a problem. As discussed in Section 2.2.1, generating an importance
function with Monte Carlo is limited in that the quality of the importance map is only as
good as the regions that are sampled. For deep-penetration problems, it may be prohibitively
difficult to obtain adequate importance sampling with traditional Monte Carlo methods.

Deterministically-obtained importance functions, however, offer the benefit of a solution
that is equally valid across all of the problem solution-space. This is because the deterministic
solution’s precision is limited to convergence criteria, not sampling of individual particles.
Using a deterministic solution is often faster and much less computationally-intensive than
Monte Carlo for importance quantification. As a result, many hybrid methods opt to use
deterministically-obtained importance functions to generate variance reduction parameters
for Monte Carlo transport.

2.3 Automated Variance Reduction Methods for

Local Solutions

The next several sections (2.3 through 2.5) describe different ways that deterministically-
obtained importance functions can be applied to variance reduction methods in practice.
Local variance reduction methods are those that optimize a tally response in a localized
region of the problem phase-space. These types of problems may be the most immediately
physically intuitive to a user, where a person standing x meters away from a source may wish
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to know their personal dose rate. In this section, notable automated deterministically-driven
variance reduction methods that have been designed for such localized response optimization
are described. Recall that Booth’s importance generator (Section 2.1.3) was also designed
for localized tally results, but will not be elaborated upon here.

2.3.1 CADIS

In 1997, Haghighat and Wagner introduced the Consistent Adjoint-Driven Importance Sam-
pling method (CADIS) [1, 3, 2] as a tool for automatic variance reduction for local tallies in
Monte Carlo. CADIS was unique in that it used the adjoint solution from a deterministic
simulation to consistently bias the particle distribution and particle weights. Earlier methods
had not ensured the consistency between source biasing and particle birth weights. CADIS
was applied to a large number of application problems and performed well in reducing the
variance for local tallies [35].

The next several paragraphs present and discuss the theory supporting CADIS. Note
that the theory presented is specific to space-energy CADIS, which is what is currently
implemented in existing software. The original CADIS equations are based on space and
energy (~r, E) dependence, but not angle, so φ† can be used rather than ψ†. This does not
mean that CADIS is not applicable to angle. This is merely a choice made by the software
and method developers given the computational resources required to calculate and store full
angular flux datasets, and the inefficiency that using angular fluxes might pose for problems
where angle dependence is not paramount.

In trying to reduce the variance for a local tally, we aim to encourage particle movement
towards the tally or detector location. In other words, we seek to encourage particles to in-
duce a detector response while discouraging them from moving through unimportant regions
in the problem. Recall from Eqs. (2.29) and (2.31) that the total system response can be
expressed as either an integral of ψ† qe (the adjoint flux and the forward source), or ψ q†e (the
forward flux and the adjoint source). Also recall that the adjoint solution is a measure for
response importance.

To generate the biased source distribution for the Monte Carlo calculation, q̂, should be
related to its contribution to inducing a response in the tally or detector. It follows, then,
that the biased source distribution is the ratio of the contribution of a cell to a tally response
to the tally response induced from the entire problem. Thus, the biased source distribution
for CADIS is a function of the adjoint scalar flux and the forward source distribtion q in
region ~r, E, and the total response R

q̂ =
φ†(~r, E)q(~r, E)∫∫
φ†(~r, E)q(~r, E)dEd~r

=
φ†(~r, E)q(~r, E)

R
.

(2.44a)

The starting weights of the particles sampled from the biased source distribution (q̂) must
be adjusted to account for the biased source distribution. As a result, the starting weights
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are a function of the biased source distribution and the original forward source distribution:

w0 =
q

q̂

=
R

φ†(~r, E)
.

(2.44b)

Note that when Eq. (2.44a) is placed into Eq. (2.44b), the starting weight is a function of
the total problem response and the adjoint scalar flux in ~r, E. The target weights for the
biased particles are given by

ŵ =
R

φ†(~r, E)
, (2.44c)

where the target weight ŵ is also a function of the total response and the adjoint scalar flux in
region ~r, E. The equations for ŵ and w0 match; particles are born at the same weight of the
region they are born into. Consequently, the problem limits excessive splitting and roulette
at the particle births, in addition to consistently biasing the particle source distribution and
weights. This is the “consistent” feature of the CADIS method.

CADIS supports adjoint theory by showing that using the adjoint solution (φ†) for vari-
ance reduction parameter generation successfully improves Monte Carlo calculation runtime.
CADIS showed improvements in the FOM when compared to analog Monte Carlo on the
order of 102 to 103, and on the order of five when compared to “expert” determined or
automatically-generated weight windows [3, 4] for simple shielding problems. For more com-
plex shielding problems, improvements in the FOM were on the order of 101 [1, 3]. Note that
CADIS improvement is dependent on the nature of the problem and that these are merely
illustrative examples.

2.3.2 Becker’s Local Weight Windows

Becker’s work in the mid- 2000s also explored generating biasing parameters for local source-
detector problems [31]. Becker noted that in traditional weight window generating methods,
some estimation of the adjoint flux is used to bias a forward Monte Carlo calculation. The
product of this weight window biasing and the forward Monte Carlo transport ultimately
distributed particles in the problem similarly to the contributon flux. In his work, Becker
used a formulation of the contributon flux, as described in Eq. (2.32) to optimize the flux
at the forward detector location. The relevant equations are given by Eqs. (2.45a) - (2.45f).

First, the scalar contributon flux φc, which is a function of space and energy is calculated
with a product of the deterministically-calculated forward and adjoint fluxes, where

φc(~r, E) = φ(~r, E)φ†(~r, E). (2.45a)

This is then integrated over all energy to obtain a spatially-dependent contributon flux

φ̃c(~r) = Cnorm

∫ ∞
0

φc(~r, E)dE, (2.45b)
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where the normalization constant, Cnorm, for a given detector volume, VD, is:

Cnorm =
VD∫

VD

∫∞
0
φc(~r, E)dEdV

. (2.45c)

The space- and energy-dependent weight windows are given by:

w̄(~r, E) =
B(~r)

φ†(~r, E)
, (2.45d)

where
B(~r) = α(~r)φ̃c(~r) + 1− α(~r) , (2.45e)

and

α(~r) =

[
1 + exp

(
φ̃cmax

φ̃c(~r)
−
φ̃c(~r)

φ̃cmax

)]−1

. (2.45f)

Becker found that this methodology compared similarly to CADIS for local solution vari-
ance reduction for a large challenge problem comprised of nested cubes. The particle density
throughout the problem was similar between CADIS and Becker’s local weight window. The
FOMs were also relatively similar, but were reported only with Monte Carlo calculation run-
times (meaning that the deterministic runtimes were excluded). Note that Becker’s method
requires both a forward and an adjoint calculation to calculate the contributon fluxes, while
CADIS requires only an adjoint calculation.

2.4 Automated Variance Reduction Methods for

Global Solutions

Variance reduction methods for global solutions are designed to obtain an even distribution
of error across several tallies or a tally map that spans the entire problem phase-space. The
previous section detailed several methods that automate variance reduction for localized
tallies. However, for global solutions these methods do not work well. The global tally
suffers from a large range in variance across the physical problem space, and the solution is
dependent on the flux distribution throughout the problem.

This section describes several methods that provide automated variance reduction for
global solutions or multiple tallies. The general principle that these methods follow is that
by distributing particles evenly throughout the Monte Carlo problem, a global tally will have
approximately the same sample size in each region, resulting in a uniform variance across the
tally. This often requires a forward deterministic solution to determine the density of forward
particles throughout the problem, and subsequently using that forward distribution to aid
in generating an importance map. This section summarizes the theory behind a number of
existing global variance reduction methods. The section is concluded with a summary of
how the methods performed and in which problems they performed well.
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2.4.1 Cooper’s Isotropic Weight Windows

Cooper and Larsen developed a weight window technique to reduce the variance of Monte
Carlo global solutions [36] using a calculation of the forward flux from solutions obtained
from diffusion, quasidiffusion [37], or pure Monte Carlo. In their work, Cooper and Larsen
utilized a forward solution to the transport equation to generate weight window values to
uniformly distribute particles throughout the problem. By doing so, the variance in the
scalar flux remained relatively constant throughout the problem for a problem-wide tally,
rather than rising significantly with increasing distance from the forward source. Cooper’s
“isotropic” weight windows (named because they were not dependent on Ω̂ ) dependent on
~r are given by:

w̄w(~r) =
φ(~r)

maxφ(~r)
, (2.46a)

ww(~r)top = ρw̄w(~r) , (2.46b)

and

ww(~r)bottom =
w̄w(~r)

ρ
, (2.46c)

where ρ is the weight window scaling factor. Note that by setting the weight window tar-
get value to be inversely proportional to the total flux in the cell, the density of particles
throughout the problem ends up as roughly constant. Also note from Eq. (2.46a) that the
weight windows are depend on space only.

In practice, Cooper’s algorithm iteratively switches between solving the diffusion equation
with transport correctors (Eddington factors described by [38]), and Monte Carlo solutions;
this process is known as quasidiffusion [38, 37]. An initial quasidiffusion solution is used to
generate weight windows, and then after a relatively short runtime, the Monte Carlo solution
is used to generate updated Eddington factors for the quasidiffusion solution.

Because Cooper’s method depends on Monte Carlo to generate the Eddington factors for
the quasidiffusion problem, this method is limited by the iterative switch between the qua-
sidiffusion solution and the Monte Carlo solution. The frequency with which this switching
happens is entirely up to the user, but may drastically affect the efficiency of the method.
Further, Cooper notes that we do not know at what point in time (for which number of N
particles) the Monte Carlo solution becomes more accurate than the quasidiffusion solution,
which is an important issue in choosing solution parameters.

2.4.2 Becker’s Global Weight Windows

Becker, in addition to developing the local VR method discussed in Section 2.3.2, developed
a global space-energy weight correction method both with (Section 2.5) and without direc-
tional biasing [39, 31]. Becker’s global method uses a formulation of the space-dependent
contributon flux, as with the local weight windows described in Section 2.3.2. For reference,
those are defined in Eqs. (2.45a) and (2.45b).
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Becker defines the spatially-dependent contributon flux parameter as B(~r), where

B(~r) = φ̃c(~r). (2.47)

Becker’s method defines a different adjoint source distribution depending on the response
desired for the calculation. To optimize the flux the adjoint source is defined as:

q†(~r, E) =
1

φ(~r, E)
. (2.48a)

If the detector response is desired then

q†(~r, E) =
σd(~r, E)∫∞

0
φ(~r, E)σd(~r, E)dE

, (2.48b)

can be used instead. The space- and energy-dependent weight windows are then a function
of the contributon flux, where

w̄(~r, E) =
B(~r)

φ†(~r, E)
. (2.49)

The process followed by Becker’s global method uses two deterministic calculations to
generate weight windows for the Monte Carlo calculation. First, the forward flux is calculated
deterministically and used to construct the adjoint source distribution. After the adjoint
solution is run, the contributon flux is calculated. The contributon flux and the adjoint flux
are then used to construct the weight windows.

Becker’s method aims to distribute response evenly throughout the problem. However,
like FW-CADIS (discussed below in Section 2.4.3), the global response weight windows are
proportional to the forward response,

w̄(~r, E) ∝
∫
σ(~r, E)φ(~r, E)dE

σ(~r, E)
(2.50)

rather than the forward flux as in Cooper’s method, where w̄(~r, E) ∝ φ(~r, E) .
In implementation, both Becker and Cooper’s global methods undersampled the source

(in comparison to FW-CADIS, which will be described in Section 2.4.3) for a specified
calculation time. However, Becker’s method sampled ∼1/3 the number of particles that
Cooper’s method did. Notably, Becker’s method did obtain better relative uncertainties for
low flux-regions in the problem.

2.4.3 FW-CADIS

In 2007, Peplow, Blakeman, and Wagner [40] proposed three methods by which variance
reduction could be decreased in global mesh tallies in deep-penetration radiation transport
problems. The first method, using a CADIS calculation where the adjoint source is defined at
the problem boundary, aimed at moving particles outward to the problem edges. The second
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method used standard CADIS, but instead defined each cell as equally important, so the
adjoint source was defined equally throughout the problem phase-space. The last method,
called Forward-Weighted CADIS (FW-CADIS), distributed the adjoint source across mesh
cells as an inverse relation to the forward response of the cell. In their work, Peplow et al.
found that the first method had large uncertainties in areas of the problem far from the
boundary; the second method performed slightly, but not significantly, better than analog;
and the third method had the most uniform uncertainty distribution.

FW-CADIS [5, 6, 41] built off of the work by Cooper and the CADIS method. Like
Becker’s method, FW-CADIS uses a forward deterministic calculation to determine the
source distribution for the adjoint calculation. Unlike Becker’s method, which used contrib-
uton fluxes to construct weight windows, the CADIS method uses adjoint fluxes as the basis
of the weight window values. Similar to Cooper’s method, however, FW-CADIS uses the
forward calculation to determine how to evenly distribute particles throughout the prob-
lem. Like CADIS, FW-CADIS uses the adjoint solution from the deterministic calculation
to generate consistent source biasing, weight windows, and particle birth weights.

The adjoint source for the adjoint calculation is dependent on the desired response for
the system. The generic description for the adjoint source is given by Eq. (2.51) and more
specific parameters are given by Eqs. (2.52a)-(2.52c). First, we can describe a general form
of the adjoint source definition for all phase-space, P , as:

q†(P ) =
σd(P )

R
. (2.51)

Thus the adjoint source is dependent on the detector (or tally) cross-section and whatever
response is being calculated in the system. Depending on whether the response is a flux or
a dose rate, the adjoint source will differ. For example, the adjoint source for the spatially
dependent global dose,

∫
φ(~r, E)σd(~r, E)dE is:

q†(~r, E) =
σd(~r, E)∫

σd(~r, E)φ(~r, E, )dE
. (2.52a)

The adjoint source for the spatially dependent total flux
∫
φ(~r, E)dE is:

q†(~r) =
1∫

φ(~r, E)dE
. (2.52b)

Last, the adjoint source for the energy- and spatially- dependent flux φ(~r, E) is:

q†(~r, E) =
1

φ(~r, E)
. (2.52c)

The process followed by FW-CADIS is to initially run a deterministic forward calculation
to obtain the forward response. This solution is used to create the source distribution for the
adjoint problem. A second deterministic calculation is run to obtain the adjoint solution.
The adjoint solution is then used to generate variance reduction parameters in the same
manner as CADIS.
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2.4.4 Other Notable Methods

Baker and Larsen showed that the exponential transform can be used to generate VR pa-
rameters for global low-variance solutions in Monte Carlo [42]. In this work, Baker used a
forward diffusion solution to generate parameters for a combination of VR techniques: im-
plicit capture and weight cutoff, geometry splitting / rouletting with implicit capture and
weight cutoff, and the exponential transform combined with implicit capture and a weight
cutoff. The exponential transform method was then compared to the other combinations
of VR techniques to quantify its success. In their work, Baker and Larsen found that the
exponential transform approach did not work well for highly scattering problems, where
geometry splitting and Russian roulette were generally better options. Their work did not
focus on generating weight window values, nor was it tested on deep-penetration shielding
problems.

While the aforementioned methods in this and the previous sections use deterministically-
obtained solutions to generate importance maps, it should be noted that not all methods
use this approach. Booth and Hendricks’ methods used initial Monte Carlo calculations to
reduce the relative error in tallies. Two methods in the global variance reduction realm are
notable in that they too use Monte Carlo estimates of the flux to generate variance reduction
parameters [44, 43]. Van Wijk et al. [44] developed an automated weight window generator
that used a Monte Carlo calculation of the forward flux to generate weight window values.
The weight window target values could be determined based on either a flux-centered scheme
like Cooper’s (Eq. (2.46a)) or by using a ratio of the square roots of the fluxes. The second
method is a combination of Cooper’s weight window target values and knowing that the
relative error in a region is proportional to the square root of the number of particles. Van
Wijk et al. applied their methods to a PWR facility and observed a FOM increase by a
factor of >200 when compared to analog Monte Carlo. However, as with other Monte Carlo-
generated VR parameters, for deep-penetration problems this approach relies on adequate
sampling of all phase-space, which could be computationally prohibitive.

The Method of Automatic Generation of Importances by Calculation (MAGIC) method
was proposed in parallel by Davis and Turner [43]. As with Van Wijk’s method, the MAGIC
method uses an analog forward Monte Carlo –potentially with several iterations–calculation
to generate weight windows. The initial Monte Carlo runs used to generate the importance
map took less time to converge by using multigroup (rather than continuous energy) cross
section data as well as energy cutoffs. MAGIC converged on a finalized importance map by
iteratively running several lower-fidelity Monte Carlo calculations.

Davis and Hendricks compared three variants of MAGIC to FW-CADIS in ITER fu-
sion energy systems. These three variants used different weight window adjustments for
importances: weight windows in cells based on existing weight information, weight windows
in mesh cells based on flux information, and weight windows in cells based on population
density. It was concluded that the most effective method for variance reduction of those
proposed in the paper was MAGIC’s weight window in mesh cells based on flux information.
In this case, FW-CADIS’ FOM was 65% that of MAGIC’s. This compared similarly to Van
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Wijk’s method, where the flux-based results continued improving the FOM as the computa-
tional time increased. The authors did not make it clear how many iterations were required,
on average, to generate the finalized weight window map or if the time to iteratively gener-
ate the importance map was included in the FOM. While FW-CADIS’ FOM was lower than
MAGIC’s, FW-CADIS had the highest fraction of cell voxels with very low relative errors.

Peplow et al. [45] compared the performance of Cooper’s method, Van Wijk’s method,
Becker’s method, and FW-CADIS across a number of shielding calculations. For a simple
shielding problem, FW-CADIS had the shortest runtime, which included the forward and
adjoint deterministic runtimes, and had a FOM 80x higher than the analog calculation, and
more than 3x higher than the next best hybrid method. Van Wijk’s method was the only
method other than FW-CADIS to pass all statistical convergence checks for the problem, but
its reported FOM was lower than either Becker’s method or FW-CADIS. In a second deep
penetration shielding problem, FW-CADIS was the only method that passed all statistical
convergence checks. FW-CADIS also had the highest reported FOM for this problem. The
timing for all of the methods were comparable. Peplow et al. also ran two “challenge”
problems. As with the first two problems, FW-CADIS outperformed the other methods and
passed all statistical checks. Becker’s method was consistently comparable to FW-CADIS in
reported FOMs, but only passed all of the statistical checks in a single challenge problem.
Becker’s method also performed relatively better than the other methods in deep-penetration
challenge problems.

The ubiquity and continued development of global variance reduction methods illustrates
the need and desire for them in the nuclear engineering community. Some of the methods
discussed in this section–including Becker’s global weight windows, Cooper’s weight windows,
Van Wijk’s method, and FW-CADIS–have been applied to large application problems and
compared to other methods. All of the methods reduce the time to a “good” solution–thus
improving the final FOM–when compared to analog Monte Carlo. When compared against
one another, FW-CADIS consistently outperforms the other methods.

2.5 Automated Angle-Informed Variance Reduction

Methods

In a number of problems, the angular dependence of the flux is significant enough that biasing
in space and energy exclusively is not sufficient. As a result, a subset of hybrid methods were
developed to incorporate some degree of the flux anisotropy in variance reduction parameters.
Without explicitly calculating the angular flux, which is memory- and storage-intensive,
methods attempted to approximate the angular flux using other information more readily
accessible to them. These approaches are broadly categorized as methods that bias using
population control methods (such as weight windows), and methods that bias with modified
sampling methods (such as the exponential transform). Initial approaches to angular biasing
focused on approximating the angular flux, ψ, as a separable function of the scalar flux
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and an angle-dependent multiplier. These approximations of the flux were then used to
generate biasing parameters dependent on angle for highly angular-dependent problems. In
this section, methods that generate variance reduction parameters dependent on angle or
that include angular information are described.

2.5.1 Angular Biasing with Population Control Methods

2.5.1.1 AVATAR

The AVATAR [17, 46] (Automatic Variance and Time of Analysis Reduction) method gen-
erates three-dimensional, space-, energy- and angle-dependent weight windows for Monte
Carlo. The implementation of AVATAR by the authors uses a relatively course-mesh and
few-angle deterministic calculation in THREEDANT, approximating the angular flux as a
function of the scalar flux, and then subsequently passes those flux values through a postpro-
cessing code, Justine, to generate weight windows for MCNP [8]. The AVATAR approach
to determining the angular flux uses an approximation of the angular flux based on the
maximum entropy distribution, which is briefly summarized in the next few paragraphs.

Information Theory

First, for a given set of discrete values xi, i = 1, 2, · · ·n that are passed to a function, f(x),
the expectation value of that function is given by

〈
f(x)

〉
=

n∑
i=1

pif(xi). (2.53)

For the probability distribution pi = p(xi), i = 1, 2, · · ·n, the entropy of p is defined as

H(p) = −KΣipi ln pi , (2.54)

where K is a positive constant. A proof that this is indeed the associated maximal entropy
associated with all pi is given in [47]. For a continuous probability density function p(x) over
the interval I, the entropy of the continuous function is

H(p) = −K
∫
I

p(x) ln p(x)dx. (2.55)

To maximize either of these distributions, while also maintaining that Σpi = 1, one can
use Lagrangian multipliers λ and µ

pi = e−λ−µf(xi). (2.56)

This set of equations can be solved using〈
f(x)

〉
= − ∂

∂µ
lnZ(µ) , (2.57a)
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and
λ = ln

[
Z(µ)

]
, (2.57b)

where
Z(µ) = Σie

−µf(xi). (2.57c)

Jaynes [47, 48] showed that the maximum entropy probability distribution function cor-
responding to the previous equations is given by

pi = exp
[
−
(
λ0 + λ1f1(x1) + · · ·+ λmfm(xi)

)]
, (2.58)

and the entropy of this distribution is given by

Smax = λ0 + λ1

〈
f1(x)

〉
+ · · ·+ λm

〈
fm(x)

〉
. (2.59)

In this case, the constant K from Eq. (2.54) has been set to 1.
The maximum entropy approach to calculating a probability distribution function is an

attractive option given limited information about that distribution. This method’s power
lies in that it deduces a function given limited information, but does not place too great of an
importance on missing or unwarranted information. Furthermore, a distribution ascertained
from this methodology will encompass all distributions with smaller entropies that satisfy
the same constraints. Thus, the method provides the most widely applicable probability
distribution function for the system that has been defined.

Moskalev showed that by using the maximum entropy approach, a distribution function
could be reconstructed from a (truncated) Legendre expansion [49]. This is particularly
applicable to radiation transport because scattering terms are often truncated Legendre
expansions. In his application, Moskalev derived a generalized form of reconstructing a
probability distribution from a truncated expansion, where the true function represented by
a Legendre polynomial series,

f(L, µ) =
L∑
l=0

−2l + 1

2
flPl(µ) , (2.60)

could be associated with an adjusted function (obtained from maximizing the entropy of the
known values),

f̃(L, µ) = exp
( L∑
l=0

λlPl(µ)
)
, (2.61)

such that
(f, Pl) = (f̃ , Pl); l = 0, · · · , L. (2.62)

Here, λl are the Lagrange multipliers, f̃ and f are ∈ φ, and are assumed to be a function of
µ such that f(µ) ≥ 0, µ ∈ [−1, 1]. These generalized equations were then applied to group-
to-group scattering probability distribution functions, as well as reconstructing a L = 3
function. The reconstruction showed agreement except near the extrema of µ.
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Walters and Wareing [51, 50] showed that the angle-dependent source definition for a
discrete ordinates transport problem could be calculated using Moskalev’s approach [49]. In
their method, they used this approach to reconstruct the source distribution of particles in
each cell from the source moments. For standard methods, the source in a cell expanded in
Legendre moments is

Sm(x) = Sm,j

[
P0(x) +

Sxm,j
Sm,j

P1(x)

]
, (2.63)

where Sm,j is the average source in cell j, direction m, Sxm,j is the P1(x) moment of the
source, and the P0 and P1 are the associated Legendre polynomials. Using a normalized
source distribution sm(x) where

Sm(x) = sm(x)Sm,j,

and the normalized distribution is

sm(x) =
[
s0 + s1P1(x)

]
. (2.64)

In this equation, s0 and s1 are the zeroth and first Legendre moments of the source, respec-
tively. The source distribution derived from the maximum entropy distribution is

s̃(x) =
λ1,k

sinh(λ1,j)
eλ1,jP1(x). (2.65)

s̃ has normalized Legendre moments s0 and s1 that match sm(x). Because s̃ satisfies the
information that can be obtained about sm, it can be used to reconstruct Sm(x):

Sm(x) = s̃m(x)Sm,j. (2.66)

λ1,j can be found with

s1 = 3

[
coth(λ1,j −

1

λ1,j

)

]
. (2.67)

It should be noted that the same methodology that Walters and Wareing use to reconstruct
the source distribution from the source moments can be used to reconstruct the angular flux
in cells based on moments of the angular flux (i.e. the scalar flux and current) [51].

In their paper, Walters and Wareing [50] suggested that in place of solving Eq. (2.67)
for λ1,j, that a rational polynomial be used in its place to reduce computational time. The
suggested polynomial for 0 ≤ λ1,j ≤ 5 is:

λ1,j =
2.99821(

s1,j

3
)− 2.2669248(

s1,j

3
)2

1− 0.769332(
s1,j

3
)− 0.519928(

s1,j

3
)2 + 0.2691594(

s1,j

3
)3
, (2.68)

and for λ ≥ 5:

λ1,j =
1

1− µ̄
. (2.69)
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A full derivation of Eq. (2.67) and how it satisfies the maximum entropy requirements can
be found in Appendix A of Ref. [50].

In their application, Walters and Wareing found that this method was accurate over a
fairly course mesh for the problems analyzed, and the computed fluxes remained positive over
the solution space. When compared to other methods, this approach performed much better
on coarse meshes. However, the analysis was limited to 1D problems. As mesh size grew
finer, the method performed similarly to other methods. Near vacuum boundary conditions,
λ1,j →∞ at the cell boundary, causing issues in calculating the flux in these cells.

AVATAR Implementation

AVATAR uss a deterministically-obtained solution of the adjoint scalar flux and adjoint
currents to reconstruct the angular flux distribution. The angular flux distribution is then
used to generate weight windows. AVATAR built off of the methodology described by Walters
and Wareing [51, 50], but instead of reconstructing the source distribution inside the cell,
the maximum entropy method was used to reconstruct the angular fluxes. Thus the angular
flux, ψ, was reconstructed with the scalar flux, φ, and the current, J .

AVATAR avoided generating explicit angular fluxes with THREEDANT by assuming
that the adjoint angular flux is symmetric about the average adjoint current vector, J† :

ψ†(Ω̂) = ψ†(Ω̂ · n) , (2.70a)

where

n =
J†

‖J†‖
. (2.70b)

Note that n, J, ψ, and φ all have implied dependence on (~r, E). The angular flux could then
be reconstructed assuming that the angular flux is a product of the scalar flux and some
angle-dependent function

ψ†(Ω̂ · n) = φ†f(Ω̂ · n). (2.70c)

Note that Eq. (2.70c) takes the form of Eq. (2.66). Thus f is derived from the maximum
entropy distribution:

f(Ω̂ · n) =
λe(Ω̂·n)λ

2 sinhλ
, (2.70d)

and λ is a function of the average cosine µ̄

λ =
2.99821µ̄− 2.2669248µ̄2

1− 0.769332µ̄− 0.519928µ̄2 + 0.2691594µ̄3

=
1

1− µ̄
(2.70e)
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for 0 ≤ µ̄ < 0.8001 and 0.8001 ≤ µ̄ < 1.0, respectively. Also, µ is given by

µ̄(~r, E) =

∥∥J†(~r, E)
∥∥

φ†(~r, E)
. (2.70f)

Equations (2.70e) and (2.70f) are exact in both isotropic and streaming conditions [17].
Using the calculation of the angular flux described in Eqs. (2.70a) through (2.70f),

angle-dependent weight windows can be constructed. AVATAR’s space- energy- and angle-
dependent weight window is given by

w̄(~r, E, Ω̂) =
k

φ†(~r, E)f(Ω̂ · n)
, (2.71)

where k is a constant that can be adjusted to match the source distribution. In the case of
AVATAR, k was used as a normalization factor to ensure that source particles are born with
weights within the weight window. AVATAR exclusively generated weight windows, and did
not attempt to consistently bias the source distribution. Physically, the assumption behind
AVATAR is that the adjoint angular flux is locally one-dimensional, so azimuthal symmetry
is assumed.

AVATAR Results

The authors of AVATAR showed that AVATAR’s angularly-dependent weight windows im-
proved the FOM (from 5x to 7x) for a multiple-tally well-logging problem compared to the
MCNP weight window generator. AVATAR was also compared to other methods in sub-
sequent papers [16]. In an update of the MCNP weight window generator, AVATAR was
compared to variants of the weight window generator and had a FOM of 79 while variants of
the weight window generator had FOMs ranging from 105 to 119 [16]. However, the MCNP
weight window generator required multiple iterations of Monte Carlo transport to converge
on weight window values while AVATAR did not. Total runtimes for iteratively converging
on weight window values were in the 200 to 300 minute range, while AVATAR took roughly
5 minutes to converge on weight window values for the problem. Whether these calculations
were performed in serial or parallel were not discussed.

The MCNP weight window generator has also been adapted to use weight window values
seeded by a solution from AVATAR [16]. This method had FOMs comparable to the default
MCNP weight window generator, but only required 1 iteration to converge rather than 3.
This reduced the total transport runtime from roughly 260 minutes to 140 minutes, but still
required user experience and input to adequately set up and prepare the deterministic input
for AVATAR.

The method used by AVATAR to produce angle-dependent weight windows successfully
incorporated angular information into variance reduction parameters for Monte Carlo with
very little additional computational burden. However, because AVATAR was not fully auto-
mated, the user had to have knowledge on the use of the SN deterministic solver in addition
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to the Monte Carlo methods they were trying to optimize. As a result, the user needed to
adequately prepare the deterministic inputs, correctly specify the adjoint source for the de-
terministic solve, and then pass these values to postprocessing software [52, 16]. The FOMs
reported with AVATAR did not incorporate the additional time required for user setup and
preparation of inputs. Though this is not a customary time inclusion, the burden of time for
this process may be significant. Though more computationally efficient than the weight win-
dow generator, this aspect of AVATAR may be too substantive of an obstacle for new-user
approachability. Further, it leaves more room for user-induced error.

The AVATAR method [17, 46] used an approximation of the angular flux–without ex-
plicitly calculating it–to generate angle-dependent weight windows. It operated with the
approximation that the angular flux was separable and symmetric about the average current
vector. The angular flux was then calculated using a product of a deterministically-obtained
scalar flux and an exponential function, derived from the maximum entropy distribution,
that was a function of the scalar flux and the current. Space-, energy-, and angle-dependent
weight windows for the Monte Carlo problem were then generated from the inverse of the
angular flux. AVATAR improved the FOM for sample problems from 2 to 5 times, but did
not apply to problems where the flux was not azimuthally symmetric.

2.5.1.2 Simple Angular CADIS

Simple Angular CADIS [52] is built on the theory of CADIS and FW-CADIS, but incorpo-
rates angular information in the methods. Simple Angular CADIS does so without explicitly
using angular flux solutions from the deterministic solution. Instead, the method reconstructs
the angular flux in the same manner employed by AVATAR, and additionally consistently bi-
ases the source distribution with the weight windows using the same methodology as CADIS
and FW-CADIS. Recall that the original implementation of AVATAR did not have consistent
source biasing. In their work, Peplow et al. implemented simple angular CADIS in MAVRIC,
a hybrid methods software package distributed with the SCALE codebase [27]. The Simple
Angular CADIS method was implemented with two different approaches to variance reduc-
tion: directionally-dependent weight windows with directionally-dependent source biasing
and directionally-dependent weight windows without directional source biasing.

Theory

The Simple Angular CADIS approach, like AVATAR, uses a reconstruction of the angular
flux derived from the maximum entropy distribution (Section 2.5.1.1). In Simple Angular
CADIS, the authors approximate the adjoint angular flux such that

ψ†(~r, E, Ω̂) ∼= φ†(~r, E)
1

2π
f(Ω̂ · n̂) , (2.72)

where f(Ω̂ · n̂) is given by the same Eqs. (2.70d), (2.70e), (2.70f) as AVATAR. Note that this
differs from AVATAR’s reconstruction of the angular flux, Eq. (2.70a), by a factor of 1/2π.



CHAPTER 2. LITERATURE REVIEW 37

As it was only dependent on µ, AVATAR’s original approach assumed azimuthal symmetry,
but did not incorporate any factor of integration into the angular flux reconstruction. By
including the azimuthal integration factor of 1/2π, this version of ψ† satisfies

φ†(~r, E) =

∫
φ†

1

2π
f(Ω̂ · n̂)dΩ̂.

The corresponding angle-dependent weight windows are then given by:

w̄(~r, E, Ω̂) =
2πk

φ†(~r, E)f(Ω̂ · n)
. (2.73)

For the variant method with directionally-dependent weight windows and without direc-
tional source biasing, the biasing parameters are given by Eqs. (2.74). The biased source
distribution, q̂(~r, E, Ω̂), is given by a combination of the standard CADIS biased source,
φ†(~r, E) and the original directional source distribution, q(Ω̂ · d̂) such that

q̂(~r, E, Ω̂) =
1

R
q(~r, E)φ†(~r, E)

1

2π
q(Ω̂ · d̂)

= q̂(~r, E)
1

2π
q(Ω̂ · d̂).

(2.74a)

The direction d̂ is sampled using the original directional source distribution q(Ω̂ · d̂). The
birth weight matches standard CADIS with

w0(~r, E, Ω̂) =
q(~r, E, Ω̂)

q̂(~r, E, Ω̂)

=
R

φ+(~r, E)
,

(2.74b)

and the weight window target value is given by

w̄(~r, E, Ω̂) =
R

φ†(~r, E)

f(Ω̂0 · n(~r0, E0))

f(Ω̂ · n)

= w̄(~r, E)
f(Ω̂0 · n(~r0, E0))

f(Ω̂ · n)
.

(2.74c)

Note that the biased source distribution, q̂(~r, E, Ω̂), is a function of the biased source distri-
bution from standard space- energy-CADIS and of the original directional source distribution.
This is why this method has directional weight windows, but not directional source biasing.
For the second method, with directionally-dependent weight windows and with directional
source biasing, the biasing parameters are given by the equations summarized in Eqs. (2.75).
The biased source distribution is given by a combination of the space-energy biased source



CHAPTER 2. LITERATURE REVIEW 38

distribution, the original directional source distribution, and a directionally-dependent bi-
ased source distribution, f(Ω̂ · n̂0), such that

q̂(~r, E, Ω̂) =
1

Rc
q(~r, E, Ω̂)φ†(~r, E, Ω̂)

=

[
1

R
q(~r, E)φ†(~r, E)

] [
1

c

1

2π
q(Ω̂ · d̂)

1

2π
f(Ω̂ · n0)

]
= q̂(~r, E)

[
1

c

1

2π
q(Ω̂ · d̂)

1

2π
f(Ω̂ · n0)

]
.

(2.75a)

The constant c is given by

c =

∫
1

2π
q(Ω̂ · d̂)

1

2π
f(Ω̂ · n0)dΩ̂. (2.75b)

The birth weights are also a function of direction, where

w0(~r, E, Ω̂) =
q(~r, E, Ω̂)

q̂(~r, E, Ω̂)

=
R

φ+(~r, E)

2πc

f(Ω̂ · n0)
,

(2.75c)

as are the target weights

w̄(~r, E, Ω̂) =
R

φ†(~r, E)

2πc

f(Ω̂ · n0)

= w̄(~r, E)
2πc

f(Ω̂ · n)
.

(2.75d)

Details about how the aforementioned equations were practically implemented are de-
tailed in Ref. [52]. The motivated reader may explore this reference for details on the
calculation of λ, µ̄,

∥∥J†(~r, E)
∥∥, and f(Ω̂ · n̂0)

Results

To test these two modifications of CADIS, the authors ran a number of test problems and
compared them against standard implementations of CADIS and analog Monte Carlo runs.
For a spherical boat test problem, Simple Angular CADIS without directional biasing im-
proved the FOM by a factor of 2 to 3. Note that because the source is monodirectional,
directional source biasing was not compared. Simple Angular CADIS with- and without-
directional source biasing improved the FOM for active interrogation sample problems and
for simple duct streaming problems. The methods did not improve the FOMs for sample
problems using a neutron porosity tool or a gamma-ray litho-density tool.
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The range in performance for angle-dependent problems was explained by the authors as
a failure of the angular flux approximation to capture the true distribution of the angular
flux. Because Simple Angular CADIS uses the same approximation in calculating the angular
flux (Eq. (2.72)) as AVATAR, it is limited in the types of anisotropy that it can capture.
As a result, the biasing parameters for a problem are unlikely to adequately reflect the flux
distribution in problems where the flux is not captured effectively by the P1 expansion.

The authors also noted that because the weight window is dependent on space/energy/an-
gle, the source birth weights only matched the weight window target values at a specific point
in the weight window region. If the weight window covered a substantial region of phase-
space, this could result in particle birth weights that do not adequately correspond to the
importance of the region that they are born into, resulting in increased runtime and a more
computationally-intensive calculation.

2.5.1.3 Cooper’s Weight Windows

Cooper and Larsen, in addition to generating global isotropic weight windows from a de-
terministic forward solution (as described in Section 2.4.1), also developed angle-dependent
weight windows [36]. Here, the forward angular flux is calculated in a similar manner as
the AVATAR method, where the angular flux is a product of the scalar flux and an angle-
dependent function. In this case, the adjustment factor also includes a factor of 4π,

ψ(~r, Ω̂) ≈ A(~r)e
~B(~r)·Ω̂, (2.76a)

where A(~r) and ~B(~r) are given by:

A(~r) =
φ(~r)

4π

B(~r)

sinhB(~r)
(2.76b)

~B(~r) = B(~r)
~λ(~r)∣∣∣~λ(~r)

∣∣∣ (2.76c)

and

λ(~r) = cothB(~r)− 1

B(~r)
. (2.76d)

If both A(~r) and ~B(~r) are inserted into the equation for ψ(~r, Ω̂), Eq. (2.76a), the formula-
tion will be very similar to AVATAR’s reconstruction of the angular flux. However, Cooper’s
method differs from AVATAR in the calculation of λ(~r). Cooper noted that λ(~r) could be
estimated with either the scalar fluxes and currents from a fairly low-cost quasidiffusion
calculation,

λi(~r) =
Ji(~r)

φ(~r)

=
1

Σtr(~r)φ(~r)

∂

∂rj
Eij(~r)φ(~r) ,

(2.76e)
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or with the scalar fluxes and currents directly from the Monte Carlo solution (recall that
Eij(~r) is the Eddington factor described in Section 2.4.1). Cooper noted that because Monte
Carlo robustly calculates these values, it is the more optimal choice. After obtaining these
values from the deterministic calculation, Cooper’s angle-dependent weight window could be
calculated with

wwi,j(Ω̂) =
ψi,j(~r, Ω̂)

maxφi′,j′/4π
. (2.76f)

As mentioned in Section 2.4.1, Cooper’s method was limited in that it used an iterative
quasidiffusion / Monte Carlo solution to generate the biasing parameters for the problem.
This method was not automated; and the ideal frequency between iterations was never
explored. However, Cooper showed in two-dimensional example problems that the angularly-
dependent weight windows significantly improved the figure of merit as compared to analog
Monte Carlo. The distributions of the FOM and the resulting tally were also much smoother
with the approach described in their work. Further, the angular weight windows performed
slightly better than the isotropic weight windows in evenly distributing the particles, even
in problems where the anisotropy was not significant. However, like AVATAR, this method
is limited in the types of anisotropy it can quantify due to the approximations it uses to
reconstruct the angular flux. In generating the estimates for ~λ, the authors found that
using a quasidiffusion estimate was more efficient than using Monte Carlo estimates, likely
because the estimates of the factors could be periodically updated as the solution iteratively
converged.

2.5.2 Angular Biasing Using the Exponential Transform

2.5.2.1 Early Work

As discussed in Section 2.1.2, the exponential transform is a modified sampling method that
adjusts the distance-to-collision in Monte Carlo transport to encourage particle transport
in preferential regions. This is done by modifying the sampled cross section. Recall from
Eq. (2.21) that the exponential transform is dependent on a transform parameter p and the
cosine angle µ, such that Σ∗t = Σt(1− pµ). When used without angle biasing,

ψ†g(r,Ω) ≈ eΣtλ·r , (2.77)

the exponential transform can have undesirable weight fluctuations [2], especially as the
number of collisions to reach a tally increases [53]. Eq. (2.77) shows that the importance
function (the adjoint flux) can be approximated as an exponential function varying in space,
dependent on the total cross section Σt, distance traveled r, and a parameter defining the
amount and direction of biasing λ.

Dwivedi [54] showed that by adding an angle-dependent collision biasing scheme in ad-
dition to the exponential transform, the problematic weight fluctuations could be mitigated.
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The collision biasing scheme introduced with the exponential transform takes the form

ψ†g(r,Ω) ≈ σs,0e
Σtλ·r

4πσt(1− λ · Ω)
. (2.78)

Note that the ratio of cross sections outside of the exponential function σs,0/σt, where σs,0
is the zeroth moment of the scattering cross section, the ratio of the cross sections is the
survival probability in an interaction event, and the (1 − λ · Ω) term is consistent with the
weight adjustment required for the exponential transform (Eq. (2.1.2)). This was applied
to a monoenergetic problem with slab geometry and isotropic scattering, and the variance
was reduced by a factor of more than 100 when compared with other exponential transform
methods.

Gupta and Dwivedi’s subsequent work [53] adjusted the factor described in the preceding
paragraph by applying the exponential transform with angle biasing to deep-penetration
problems with anisotropic scattering. The authors did not explicitly use the true distribution
for anisotropic scattering, but rather chose to approximate the biased kernel to be a function
of the isotropic angular distribution. The authors observed a reduction in the variance by
a factor of 10, but they acknowledged that, while the combination of the biased kernel and
exponential biasing reduced weight fluctuations, it also had the potential to introduce other
weight fluctuations due to anisotropies in the flux.

Ueki and Larsen [55] generalized Dwivedi’s importance transform and applied it to
isotropic, linearly anisotropic, and quadratically anisotropic scattering. They observed that
Dwivedi’s method and the generalized Dwivedi method outperformed non-angle-dependent
exponential biasing for all types of scattering, and that their generalized method outper-
formed Dwivedi’s original method in higher order scattering. The work of Dwivedi, Gupta,
Ueki and Larsen was applied and each compared with one-dimensional sample problems.
Ueki and Larsen pointed out that their method could be extended to three-dimensional
problems using Turner and Larsen’s methodology (described in Section 2.5.2.2) [55].

In 1985, Henricks and Carter [56] described a method by which photon transport could be
biased in angle with an exponential transform adjustment factor. In this study, the authors
performed studies on three test problems with the exponential transform adjustment factor
and with a synergistic angular bias and exponential transform adjustment. In all studies, the
synergistic biasing outperformed the exponential transform adjustment alone. However, their
method performed best in highly absorbing media. The authors noted that this performance
was due to the fact that the biasing could be strong without undersampling scattering in the
problem. They also pointed out that, while the weight window method was comparable in
efficiency to the method described, their method avoided choosing importances and weight
window values for biasing. Their method was limited to exclusively photon transport biasing,
and not neutron transport. However, the authors were optimistic that the method could be
extended to neutron transport with relative ease. Both, Niemal, and Vergnaud [57] also
derived VR parameters for the exponential transform and for collision biasing based on the
adjoint solution as a measure of importance.
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2.5.2.2 LIFT

The LIFT [58, 59] method developed by Turner and Larsen, and like Dwivedi’s exponential
transform, is a modification of the zero variance solution (see Section 2.2.3). Consequently,
the LIFT method uses a calculation of the adjoint flux as a measure for importance in the
problem to distribute particles according to the contributon density in the problem. LIFT
uses a deterministic calculation to generate biasing parameters for the exponential transform
and weight window variance reduction techniques.

As with the form of the importance function derived by Dwivedi (Eq. (2.78)), the LIFT
method generates an angle-dependent importance function by taking the product of a space-
based exponential function and an angle-informed collision estimator. Additionally, LIFT
uses a deterministic calculation of the adjoint scalar flux to inform the angular flux recon-
struction. The adjoint angular flux is approximated as piecewise continuous in space and
angle with Eqs. (2.79a) through (2.79d):

ψ†g,n(r,Ω) ≈ φ†g,nVn

[
βg,n

σs0,g→g,nbg,n(Ω)

σt,g,n − ρg,n · Ω
eρg,n·(r−rn)

]
, (2.79a)

where the physical system is comprised of N regions of volume Vn, and ψ†g,n is the approx-
imation of the angular flux for group g and region n. Further, β, the normalization factor,
is given by:

βg,n =
1∫

Vn
eρg,n·(r−rn)dr

∫
4π

σs0,g→g,nbg,n(Ω)

σt,g,n−ρg,n·Ω dΩ
; (2.79b)

bg,n, the linearly anisotropic factor, is

bg,n(Ω) = 1 + 3µg→g,n
σt,g,n − σs0,g→g,n

|ρg,n|2
ρg,n · Ω ; (2.79c)

and the biasing parameter ρg,n is given by the product of the cross section and the biasing
parameter λ seen previously in Eqs. (2.77) and (2.78),

ρg,n = σt,g,nλg,n. (2.79d)

Turner showed that ρg,n can be obtained from the deterministic solution to the adjoint
equation, rather than from the cross section and λ, which requires some assumptions on
the distribution of particles. Instead, Turner showed that ρ can be found in terms of the
deterministic scalar fluxes, where

ρx,g,n =
1

∆xn
ln

(
φ†g,i+1/2

φ†g,i−1/2

)
(2.80a)

ρy,g,n =
1

∆yn
ln

(
φ†g,j+1/2

φ†g,j−1/2

)
(2.80b)
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and

ρz,g,n =
1

∆zn
ln

(
φ†g,k+1/2

φ†g,k−1/2

)
(2.80c)

are all defined using cell-edge flux values in Cartesian coordinates.
Eq. (2.79a) is an adjustment of the exponential transform described by Dwivedi [54].

However, rather than relying upon an isotropic scattering law, like earlier implementations
of the exponential transform, the LIFT method adjusts the transform to instead be linearly
anisotropic in angle. The derivation of this equation for both linearly anisotropic scattering
and isotropic scattering is available in [58]. To summarize: the parameters βg,n, bg,n, and
ρg,n are calculated from values obtained from the deterministic calculation and are used to
calculate ψ†g,n.

In addition to using the exponential transform to bias the particles in angle, the LIFT
method also uses weight windows for particle weight adjustment. However, the computa-
tional cost of generating angle-dependent weight windows from the previous equations led
the authors to choose space-energy exclusive weight windows. The weight window target
values were calculated to be inversely proportional to the adjoint solution, as with other
methods

wwcenter,g,n =
φ†g,src

φ†g,n
. (2.81)

The LIFT method [58, 59], like AVATAR, calculated the angular flux for a region by
assuming the angular flux was a product of the scalar flux and an exponential function. The
angular flux values were then used to generate values for the exponential transform vari-
ance reduction technique to bias the particles in space, energy, and angle. Like AVATAR,
LIFT also generated weight window parameters. However, generating a full angle-dependent
weight window map and running Monte Carlo transport with those weight windows was com-
putationally limiting, and the authors chose to only generate space- and energy-dependent
weight windows. Turner showed that LIFT outperformed AVATAR for several example
problems, but both methods performed poorly in voids and low-density regions.

Turner compared a number of variants of LIFT [59] against AVATAR to determine the
efficiency of LIFT. In his investigation, Turner compared LIFT and AVATAR using approx-
imations for the adjoint solution with diffusion and SN transport calculations, and with
various methods to calculate weight window parameters, including using LIFT combined
with AVATAR’s weight window parameters. In most cases, LIFT outperformed AVATAR.
In problems with voids and low-density regions, the efficiency of the LIFT method decreased,
but so did AVATAR. This independently confirmed the findings of the previous study. How-
ever, an important note that Turner mentioned was that while increasing the accuracy of
the deterministic solution may decrease the variance, it is not necessarily the best for the
FOM. This is a valuable lesson for all automated variance reduction methods: an overly
accurate solution for the adjoint problem may reduce the variance but come at such a high
computational cost such that it decreases the FOM.
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More recently, Keady and Larsen showed that LIFT could be improved upon further
by using cell-averaged currents and fluxes rather than cell-edge values for angular biasing
[60]. By using this modified variation of LIFT, material interfaces do not create strong flux
discontinuties on cell edges, resulting in a solution that is both smoother and more realistic.
Results were presented for a one-dimensional monoenergetic slab problem with material
interfaces. The modified version of LIFT outperformed both the original LIFT method and
Monte Carlo weight windows generated with forward deterministic weight windows.

2.6 Variance Reduction in Large Application

Problems

Variance reduction methods exist for Monte Carlo methods to achieve a more accurate answer
in a shorter amount of time. Automated variance reduction methods have been designed
to aid users in generating variance reduction parameters where it might not be intuitive or
obvious what variance reduction parameters are best for a problem. The most successful
variance reduction methods construct or estimate an importance function for the desired
response from a preliminary calculation. This importance function may be derived from the
adjoint solution to the transport equation, or it may be derived from contributon theory.

The methods described in Sections 2.3 through 2.5 have been implemented and tested
in a number of software packages. The problem spaces over which they have been applied
is extensive, and show that a large subset of application problems can be successfully simu-
lated with the assistance of existing variance reduction techniques. Local variance reduction
methods can be used to reduce the variance in source-detector problems where the detector
constitutes a small subset of the problem phase-space. Global variance reduction methods
can be used to distribute response sampling equally throughout several tallies or a problem-
wide tally. Angle-based variance reduction methods are used in problems where space- and
energy- variance reduction methods alone are not sufficient. For large and complex problems,
automated versions of each of these methods are required as the user expertise to obtain even
remotely adequate parameters is significant. Here, the existing state of automated variance
reduction methods and the applications on which they have been tested will be summarized.

Presently, numerous hybrid methods packages that use the methods described in the
preceeding sections are available. These packages are targeted towards deep-penetration
radiation transport and shielding applications. The CADIS and FW-CADIS methods are
distributed with MAVRIC [27, 40] and ADVANTG [61] from Oak Ridge National Laboratory
(ORNL), which use the discrete ordinates code Denovo [62] to make VR parameters for the
Monte Carlo codes Monaco [27] and MCNP[8], respectively. CADIS and FW-CADIS are also
available in Tortilla [63], which uses the hybrid methods software using the deterministic code
Attilla [64]. Tortilla also includes a version of LIFT and LIFT-based weight windows. The
Deterministic Adjoint Weight Window Generator (DAWWG) from Los Alamos National
Laboratory (LANL) [65] uses the adjoint solution from a deterministic solve in PARTISN
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[66] to generate biasing parameters for MCNP, and also includes AVATAR functionality.
MCNP [8] is distributed with a weight window generator (WWG) that uses a preliminary
Monte Carlo solution to estimate an importance function for the problem. Though this list
is not exhaustive, it illustrates the present ubiquity and need for hybrid methods to analyze
realistic problems. In the analysis of realistic problems, ensuring that a “good” answer is
achieved is necessary for safety and security. In the next few paragraphs, how and how
effectively each of these methods have been applied to application problems is summarized.
The degree to which each is successful is also discussed.

CADIS and FW-CADIS have been used for a number of studies of spent fuel storage
facilities. Radescleu et al. used FW-CADIS in MAVRIC to calculate spent fuel dose rates
of a single dry cask with finely detailed geometry and spent fuel isotopic compositions [67].
Chen et al. used MAVRIC [27] to analyze dose rates on spent fuel storage containers [68].
The fueled region of the storage container was homogenized into an effective fuel region.
They found that in a coarse energy group calculation (27G19N) MAVRIC underestimated
neutron dose rates at high energies. However, MAVRIC’s ability to generate importances
in three dimensions allowed it to have better problem-wide results, while the compared to
methods (SAS4) struggled generating satisfactory results in the axial direction. This was
demonstrated to a greater extent in an analysis of an independent spent nuclear fuel storage
installation (ISFSI) [69] by Sheu et al. The FOM achieved by MAVRIC appeared inferior
to those obtained with SAS4 or TORT/MCNP in a single cask. However, when applied
to a storage bed of 30 casks MAVRIC was able to generate VR parameters at all, which
were unfeasible for the other two methods. These studies demonstrated that CADIS and
FW-CADIS are desirable methods for which to obtain global and three-dimensional variance
reduction parameters for realistic problems.

ADVANTG [61], developed at ORNL [70, 35, 71] is a hybrid methods package for auto-
mated variance reduction of the Monte Carlo transport package, MCNP [11]. ADVANTG
uses the deterministic transport code Denovo [62] to perform the forward and adjoint calcu-
lations for CADIS and FW-CADIS. At its inception, ADVANTG was used to analyze various
threat-detection nonproliferation problems [61]. FOM improvements on the order of 102 to
104 when compared with analog Monte Carlo have been observed. However, Mosher et al.
noted that the methods struggled with problems exhibiting strongly anisotropic behavior.
In particular, they noted that low-density materials and strongly directional sources posed
issues. This indicated that while CADIS and FW-CADIS are very useful methods, they have
limitations in highly angle-dependent applications.

The deterministic adjoint weight window generator (DAWWG), utilizes the discrete or-
dinates code PARTISN [65] to generate space- energy- and angle-dependent weight windows.
It is an internal feature of MCNP. The angle-dependent weight windows are calculated with
the same methodology as AVATAR [65, 17]. Sweezy and colleagues compared DAWWG to
the standard MCNP WWG on an oil well logging problem, a shielding problem, and a dogleg
neutron void problem. The deterministic weight window generator obtained similar relative
errors as the standard WWG for the first two problems, but in a fraction of the time. How-
ever, for the dogleg void problem, which exhibited strong angular dependence in the neutron
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flux, the authors noted that DAWWG was not as effective as the standard MCNP WWG.
This was attributed to ray effects from the SN transport influencing the weight windows
obtained by DAWWG, which is not an issue for the standard WWG.

A variety of automated variance reduction methods, including CADIS and LIFT have
been implemented into the Attila / Tortilla deterministic and hybrid transport code packages
[63]. These methods were used on several nonproliferation test problems. For the most part,
LIFT and LIFT combined with weight windows outperformed CADIS’ weight windows and
source biasing, indicating that the addition of angular information was of benefit for these
more realistic nonproliferation application problems.

Peplow et. al. formulated an adjustment to CADIS in the ORNL code suite [52] to
incorporate angular information into the VR parameters (see Section 2.5.1.2. Two differ-
ent methods to generate weight windows and source biasing parameters were investigated:
CADIS with directional source biasing, and CADIS without directional source biasing. For
the method without directional source biasing, the biased source distribution matched that
of the original CADIS, but the weight window values were directionally-dependent. The
method with directional source biasing used the transform function to obtain directionally-
dependent weight windows and directional source biasing. Peplow and his colleagues found
that these methods generally increased the FOM by a factor of 1-5 as compared to traditional
CADIS, but in some cases decreased the FOM. This was attributed to the P1 approximation
used to calculate the angular flux, which limited the physical applicability of the method,
just as with AVATAR.

CADIS and FW-CADIS have shown to be the existing “gold standard” of local and
global variance reduction methods for large application problems, a selection of which were
described in the preceding paragraphs. These problems include active interrogation of cargo
containers [61], spent fuel storage casks [68, 67] and beds [69], and other nonproliferation and
shielding applications [63]. For additional applications, one may refer to [35]. In some of these
application problems, the parameters generated by CADIS or FW-CADIS were sufficient for
the problem application. However, for other problems that had strong angular dependence or
geometric complexity, the parameters were insufficient [68, 63, 52]. This can be remedied with
additional angular information in the variance reduction parameters, such as LIFT [63], but
the benefits of consistent source biasing are lost in this case. Alternatively, the angular flux
can be reconstructed in a manner similar to AVATAR [65, 52] to generate angle-dependent
weight windows, but this approximates the angular flux to be linearly anisotropic in angle
(from the P1 reconstruction), and is also dependent on the deterministic flux not having ray
effects [65].

Although numerous methods have been proposed and implemented to obtain adequate
angle-informed variance reduction parameters for application problems, they have limited
applicability, and determining in which problems they will be useful is not always straight-
forward. No single method has been successful for problems with all types of anisotropy,
and no existing angle-informed method captures the anisotropy in the flux without signifi-
cant approximation. For large-scale, highly anisotropic, deep-penetration radiation transport
problems, there exists a need for improvements in hybrid methods.
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Chapter 3

Methodology

The objective of this work is to develop a method that, like CADIS and FW-CADIS, auto-
matically generates variance reduction parameters for fixed-source, deep-penetration radia-
tion transport problems. In general, the variance reduction parameters generated by CADIS
and FW-CADIS are not sufficient for problems that are strongly anisotropic with respect to
the flux. This method will extend existing methods to generate importance maps–that in
turn generate variance reduction parameters–that are informed by angle to remedy this issue.
The first section in this chapter describes the mathematical foundation of this new method.
A discussion on how the method’s performance will be quantified follows. Finally, a descrip-
tion of the software being used and how the method is added to this software concludes this
chapter.

3.1 Theory: Angle-Informed Importance Maps for

CADIS and FW-CADIS

There exist methods to generate variance reduction parameters for deep penetration radi-
ation transport problems with strong anisotropy in the flux. These methods have shown
to have varying success, and may not be fully automated. The solution proposed in this
dissertation is a formulation that we have named the Ω-CADIS-methods. This section will
commence with a brief discussion of the foundational research on which the Ω-CADIS-
methods are built. That discussion serves as a primer for the subsequent section, which is
an introduction to the Ω-CADIS-methods and a discussion on how they differ from their
predecessors.

3.1.1 Previous Work

As discussed in Sections 2.3.1 through 2.5, the existing gold standard for automatically gen-
erating variance reduction parameters for deep penetration fixed-source radiation transport
problems are CADIS and FW-CADIS. Both of these methods are very effective at generating
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variance reduction parameters for local and global solutions, respectively. However, CADIS
and FW-CADIS have only been implemented to perform variance reduction in space and
energy, not angle. As a result, solutions for problems with strong anisotropy in the flux
are not always optimized with these methods, resulting in slow convergence times and low
FOM values. Problems with strong anisotropies in the flux require more than just space-
and energy- variance reduction techniques. A number of angle-informed variance reduction
methods have been investigated, most notably AVATAR, LIFT, and a modified version of
CADIS using AVATAR-type angular parameters.

LIFT, AVATAR, and Simple Angular CADIS all showed that by including angular infor-
mation into Monte Carlo variance reduction parameters the FOM can be improved. However,
none of these methods used the actual angular flux to calculate the variance reduction pa-
rameters for the problem they were optimizing. Without explicitly using the angular flux
solutions they were limited in which types of problems they were applicable, because some
assumption of the degree of anisotropy of the flux was made. Further, LIFT and Simple
Angular CADIS showed that by including substantial angular biasing in the weight windows
in problems where the approximation to the angular flux is not sufficient, the FOM can
decrease not unsubstantially, defeating the purpose of using these methods.

3.1.2 The Ω Methods

The foundation of the Ω-methods is built upon CADIS and FW-CADIS. As with both
methods, the Ω-methods will use a version of the adjoint scalar flux to consistently bias a
Monte Carlo problem with the intention of reducing the variance. In Section 2.2.1 the concept
of importance was introduced. Notably, it was shown that the adjoint flux is a good marker
for the likelihood of particles to contribute to a tally, which is the particle’s importance.
It was also shown that the product of the forward and adjoint fluxes generates a pseudo-
particle flux called the contributon flux, where contributons are “importance particles”.
These importance particles can be used to show preferential flow paths from a source to a
tally or desired location.

By using a version of the adjoint scalar flux that has been formulated with the contrib-
uton flux, the direction of particle flow will be incorporated into the importance map and,
consequently, the variance reduction parameters. By using this variant of the adjoint scalar
flux, the method, like traditional CADIS, will show increasing importance as the particles
travel near the adjoint source. However, because this variant of the adjoint flux incorpo-
rates directionality of the particle flow, not all regions near the adjoint source are equally
important. In this way, the adjusted flux incorporates features from both the adjoint- and
contributon- fluxes.

The adjusted adjoint scalar flux quantity, or the Ω-adjoint scalar flux, is

φ†Ω(~r, E) =

∫
Ω
ψ†(~r, E, Ω̂)ψ(~r, E, Ω̂)dΩ̂∫

Ω
ψ(~r, E, Ω̂)dΩ̂

. (3.1)



CHAPTER 3. METHODOLOGY 49

The Ω-flux is a hybridization of the adjoint scalar flux and the contributon flux. It is both
a normalized contributon flux and a forward-weighted adjoint flux. As a result, it should
inherit some of the advantages of each of the traditional adjoint and the contributon fluxes.
Because it maintains dimensionality of the traditional adjoint scalar flux, it can be used in
place of the standard adjoint scalar flux in both CADIS and FW-CADIS variance reduction
parameter generation. This means that the method can capitalize on existing infrastructure
used to generate variance reduction parameters for CADIS and FW-CADIS, and only the
software handling the transport and flux-generation requires modification.

3.1.2.1 CADIS-Ω

As with CADIS, CADIS-Ω consistently biases a problem’s source and particle weights ac-
cording to their importance. However, CADIS-Ω uses the Ω-adjoint scalar flux rather than
the standard adjoint scalar flux to generate the biased source distribution, weight windows,
and the particle birth weights. Furthermore, because φ†Ω is used to calculate these values in
CADIS-Ω, the consistent-biasing hallmark for which CADIS is known is maintained. The
adjusted formulation of CADIS using the Ω fluxes is given by Eqs. (3.2). The biased source
distribution used by CADIS-Ω is formulated just as it is in CADIS, except the adjusted
adjoint fluxes are used:

q̂Ω =
φ†Ω(~r, E)q(~r, E)∫∫
φ†Ω(~r, E)q(~r, E)dEd~r

=
φ†Ω(~r, E)q(~r, E)

RΩ

.

(3.2a)

The starting weights of the particles sampled from the biased source distribution, q̂ are given
by

w0,Ω =
q

q̂Ω

=
RΩ

φ†Ω(~r, E)
,

(3.2b)

and the new target weights for the particle are

ŵΩ =
RΩ

φ†Ω(~r, E)
. (3.2c)

3.1.2.2 FW-CADIS-Ω

FW-CADIS differs from CADIS in that it requires a forward deterministic calculation to
generate q†, which is used as the source distribution in the adjoint deterministic problem
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(recall that CADIS sets q† = σd). Depending on the type of global response desired, FW-
CADIS runs a deterministic forward calculation to approximate the global response in the
problem. The inverse of these responses is then used to generate the biased adjoint source
distribution for the adjoint deterministic run. Therefore, the behavior of FW-CADIS-Ω in
the forward biasing portion of the calculation will remain unchanged from FW-CADIS. The
generalized form for the adjoint source definition is given by the fraction of the response in
a region of phase space, P , over the total response in the problem, or

q†Ω(P ) = q†(P ) =
σd(P )

R
.

When applied to the spatially-dependent global dose,
∫
φ(~r, E)σd(~r, E)dE, the adjoint source

will be

q†Ω(~r, E) = q†(~r, E) =
σd(~r, E)∫

σd(~r, E)ψ(~r, E, )dE
.

The adjoint source for the spatially-dependent total flux
∫
φ(~r, E)dE is

q†Ω(~r) = q†(~r) =
1∫

φ(~r, E)dE
.

The adjoint source for the energy- and spatially-dependent flux φ(~r, E) is

q†Ω(~r, E) = q†(~r, E) =
1

φ(~r, E)
.

One advantage of FW-CADIS-Ω is that, from a transport perspective, the Ω-method is
no more expensive than standard FW-CADIS. Because both versions require a forward and
adjoint deterministic calculation, an extra transport step is not required as it is for CADIS-
Ω. This is attractive, but the nature of FW-CADIS might not be the most well-suited for
the Ω-methods. Because FW-CADIS attempts to evenly distribute particles throughout
the problem using the forward-biased adjoint fluxes, the additional forward normalization
with the Ω-methods will likely skew the particle distribution in the problem in the forward
direction, and it may place too great of importance on the forward-moving particles in
generating the variance reduction parameters.

3.2 Computational Success Metrics

3.2.1 Anisotropy Quantification

As the Ω-methods are analyzed, it is important to determine the types of problems in which
the methods are successful. In addition to describing the physics that induce anisotropy in
the flux, quantifying the degree of anisotropy of the problem is useful in characterizing the
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method. In this section, a number of methods by which the anisotropy can be quantified in
these problems are proposed. A brief description of how these methods capture anisotropy
in the problem is also included. While each metric proposes an avenue by which the problem
can be analyzed, there are certainly other methods that one may propose. The methods
described in the following subsections are proposed because they use data generated from
the existing method. The degree to which they impose a computational burden will be
addressed in their analysis.

3.2.1.1 The Scalar Contributon Ratio

The hybrid methods software that will be used for this project is ADVANTG, developed at
ORNL. Section 3.3 explains how the software used interacts with other pieces of software and
how they were modified to execute this method. The standard release of ADVANTG provides
the contributon flux as an output option, which can then be used to analyze problem physics
by a user. If this option is selected as an output, a SILO file containing the contributon
fluxes for each discretized cell in space and energy is created. This is useful for problem
analysis as the user may see preferential streaming paths for particles in the problem using
this metric. The contributon flux generated in this process is given by the product of the
scalar adjoint and forward fluxes (Eq. (3.4)).

As mentioned in Section 2.2.3, the contributon flux can be calculated by using the prod-
uct of the forward and adjoint fluxes. In standard software packages that calculate the
contributon flux, like ADVANTG, the scalar contributon flux is calculated by the product
of the scalar adjoint and forward fluxes. This can be written as

φc(~r, E) = φ†(~r, E)φ(~r, E). (3.4)

A more precise calculation of the contributon flux could be generated from integrating the
angular contributon flux over all angle, as

Φc(~r, E) =

∫
Ω

ψc(~r, E, Ω̂)dΩ̂

=

∫
Ω

ψ†(~r, E, Ω̂)ψ(~r, E, Ω̂)dΩ̂.

(3.5)

Both Eqs. (3.4) and (3.5) calculate the contributon flux as a function of space and energy,
but the differences in their calculation is addressed in their notation, namely using φc or Φc.
The standard release of ADVANTG only has access to the scalar fluxes, so Eq. (3.5) is not
an accessible option for a user. Because the Ω calculations require full angular flux map, the
scalar contributon flux can be calculated with the latter formulation, rather than the former
in the modified version developed to support this work.

The first measure of anisotropy quantification that will be evaluated is the ratio between
these two quantities, as described by Eq. (3.6). The ratio between these two values is
evaluated for every cell, x, y, z, and energy group, Eg. If the adjoint or forward angular
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flux is significantly peaked in Ω, this will result in a deviation between φc and Φc, because
there will be a multiplicative effect in the angular flux captured in Φc but not φc. The more
isotropic the flux in ~r and E, the closer these values will be and the quantity will approach
unity.

M1 =
φc

Φc

∣∣∣∣
x,y,z,Eg

(3.6)

3.2.1.2 The Ratio of Adjoint Fluxes

As discussed in previous sections, the Ω-methods use the Ω-scalar flux in place of the standard
adjoint scalar flux. Therefore the ratio between these two quantities would also provide a
useful metric for comparing which regions have significantly differing bias parameters in
standard-adjoint and Ω-adjoint situations. This metric will deviate from unity if the forward
flux is anisotropic. This metric is calculated for every cell and every energy group in the
problem, as shown in Eq. (3.7).

M2 =
φ†Ω
φ†

∣∣∣∣
x,y,z,Eg

(3.7)

Metrics one and two both reasonably appear to compute the anisotropy in the flux using
versions of the contributon and adjoint fluxes, respectively. However, by expanding the
Ω-adjoint scalar flux in metric two,

M2 =
φ†Ω
φ†

∣∣∣∣
x,y,z,Eg

=

∫
Ω
ψ†(Ω̂)ψ(Ω̂)dΩ̂∫

Ω
ψ(Ω̂)dΩ̂

1

φ†

∣∣∣∣
x,y,z,Eg

,

integrating the forward angular flux over all angle,

=

∫
Ω
ψ†(Ω̂)ψ(Ω̂)dΩ̂

φ

1

φ†

∣∣∣∣
x,y,z,Eg

,
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and rearranging the terms,

=

∫
Ω
ψ†(Ω̂)ψ(Ω̂)dΩ̂

φφ†

∣∣∣∣
x,y,z,Eg

=
Φc

φc

∣∣∣∣
x,y,z,Eg

=
1

M1

∣∣∣∣
x,y,z,Eg

,

it becomes evident that the ratio of adjoint fluxes is the inverse of the scalar contributon ratio.
As a result, metric one will not be used in the analyses of the characterization problems.

3.2.1.3 The Maximum to Average Flux Ratio

An alternative metric to quantify anisotropy is to calculate the ratio between the maximum
and average angular contributon flux in each ~r, E voxel. The higher this quantity, the more
peaked the contributon flux is in Ω. Note that while using the Ω-flux would seem like the
natural choice, no angular information is directly accessible once the Ω scalar flux has been
calculated. One can compare the standard adjoint scalar flux and the Ω-adjoint scalar flux
and infer how anisotropic the flux in the cell might be, but due to the normalization that
occurs in Eq. (3.1), the variation of angular Ω fluxes throughout Ω for a cell in x, y, z, Eg is
not calculated. As such, the contributon flux must be relied upon as a next-best evaluator
of that metric:

M3 =
ψcMax

ψcAvg

∣∣∣∣
x,y,z,Eg

. (3.8)

While Eq. (3.8) directly measures the anisotropy in the problem using the angular
contributon fluxes, it doesn’t compare the difference between the fluxes used in the Ω-
and the standard adjoint methods. Metric three can be reformulated to incorporate this
information using

M4 =

ψc
Max

ψc
Avg

ψ†Max

ψ†Avg

∣∣∣∣∣
x,y,z,Eg

=
M3

ψ†Max

ψ†Avg

∣∣∣∣∣
x,y,z,Eg

,

(3.9)

as a measure between the anisotropies of the standard and contributon fluxes. This equa-
tion is a logical progression from metric two and metric three. This metric contains more
information on how perturbed the contributon flux is when compared to the original adjoint
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flux that is normally used in CADIS and FW-CADIS. In the case of a strongly anisotropic
forward flux, the forward flux would significantly change the distribution of the contributon
fluxes in a cell, but it would not affect the flux distribution of the standard adjoint angu-
lar fluxes. By comparing the anisotropy in the contributon fluxes to those in the standard
adjoint, the perturbation of the Ω flux by the forward flux in the cell can be evaluated.
In regions where the forward flux is not anisotropic, then the contributon anisotropy ratio
should be approximately the same as the standard adjoint anisotropy ratio.

Further, because the contributon flux incorporates directionality of the forward and ad-
joint fluxes, the maximum to average ratio of the contributon flux can differ from the adjoint
flux. In regions where the adjoint angular flux and the forward angular flux are traveling
in the same direction, the contributon ratio should be greater than the adjoint ratio, and
this metric will be greater than one. In regions where they are travelling in opposite or
perpendicular directions, the contributon flux will evaluate to a more isotropic state, and
metric four will be less than unity. This metric provides substantially more information
than metric two because it compares the behavior of the directional contributon and adjoint
fluxes, rather than comparing the overall behavior of the flux in the cell.

Both Eqs. (3.8) and (3.9) compare the maximum angular flux in a cell to the average
flux in the same cell. Because the average angular flux is the normalization factor, the
maximum flux in the cell is compared to some relative measure of the total flux behavior in
that cell. If, for example, the flux has several directional peaks, the average will reflect that.
The fact that Eq. (3.9) contains information on the global behavior in the contributon and
average cell, the directionality of the fluxes, and the degree of isotropy of the forward flux is
attractive. However, this is also a fairly computationally expensive calculation and it may
not be worth the computational cost when compared to metrics two and three.

3.2.1.4 The Maximum to Minimum Flux Ratio

An additional metric to quantify anisotropy in the contributon flux distribution is to calcu-
late the ratio between the maximum and minimum angular fluxes for each region of x, y, z, Eg
phase-space, as described in metric five, or Eq. (3.10). This quantity incorporates informa-
tion about the behavior of the local maximum relative to the local minimum angular flux in
each cell.

M5 =
ψcMax

ψcMin

∣∣∣∣
x,y,z,Eg

(3.10)

This metric may be more appropriate to describe the anisotropy of the flux in cells where
the distribution of flux values in the cell are not well reflected by the average flux in the cell.
As with metric three (Eq. (3.8)), metric five (Eq. (3.10)) only quantifies the anisotropy of
the contributon flux in the cell. There is no comparison or normalization to compare the
anisotropy with respect to another method. To compare it to the anisotropy of the flux in
the standard adjoint problem, a ratio similar to that of Eq. (3.9) may be formulated:
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M6 =

ψc
Max

ψc
Min

ψ†Max

ψ†Min

∣∣∣∣∣
x,y,z,Eg

=
M5

ψ†Max

ψ†Min

∣∣∣∣∣
x,y,z,Eg

.

(3.11)

As with Eq. (3.9), Eq. (3.11) uses a ratio from the standard adjoint formulation to
normalize the anisotropy of the contributon flux. Equation (3.11) is consistent with Eq.
(3.10) and normalizes using the maximum to minimum ratio of angular fluxes of the adjoint.
These two metrics will show the relative behavior of the flux in the cell, but because neither
incorporates information about the total flux behavior within the cell, they may be very
sensitive to the variance of the angular flux within the cell. Using the ratio of both the
contributon and adjoint fluxes may help to smooth this if the variance of flux distributions
within the contributon and standard adjoint is similar in a particular cell. However, if these
two differ significantly, then metric six (Eq. (3.11)) may have a synergistic effect and will
over-emphasize the variance when quantifying the anisotropy of the cell.

Metrics one through six quantify anisotropy in the problem solved by using different pa-
rameters to capture the problem physics. These metrics will be compared to one another to
determine which is the most consistently correlated with predicting the Ω-method’s success.
A user may want to know if the Ω-method will effectively generate variance reduction pa-
rameters for a Monte Carlo simulation, and this may be a prescriptive solution for that issue.
However, all of these metrics do require full angular flux solutions for both the forward- and
adjoint- problem, so some computational burden will be required. The analysis of using these
metrics will include some information of benefit to burden, which likely will come at the cost
of time. That said, because the Monte Carlo solution is more computationally demanding,
generating these metrics from the deterministic solution should be substantially less of an
obstacle.

3.2.2 Figure of Merit

The FOM is a commonly used metric to measure Monte Carlo runtimes and to gauge the
effectiveness of various hybrid methods. As discussed in Section 2.1, the FOM relates the
relative error of a solution to the time required to achieve that variance. This was introduced
in Eq. (2.20) as:

FOM =
1

R2T
,

where T is the time and R2 is the square of the relative error.
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3.2.2.1 Relative Error

In tallies with multiple regions and/or energy bins, the FOM is usually calculated from the
tally average relative error, or Ravg. This value is meaningful as it reflects the overall tally
behavior. However, it is often desirable that all portions of the tally lie below a desired
relative error threshold. A region with very low particle contribution may have a much
higher relative error than the tally average, and may also converge much slower to a desired
relative error. This results in a substantially different FOM than the tally average. In the
results presented in later chapters, both relative errors will be used to calculate different
FOMs, respectively

FOMavg =
1

R2
avgT

, (3.12a)

and

FOMmax =
1

R2
maxT

. (3.12b)

In addition to reporting both FOMs for the entire problem, comparing the distribution of
values of the relative error for problems will be a useful metric in method characterization. If,
for example, FW-CADIS acquires desirable results in a calculation, then the problem should
have a relatively even uncertainty distribution for all cells. Comparing the distribution of
relative errors between the analog case and the hybrid case reveals whether the method is
effectively generating variance reduction parameters for the entire problem or if it is more
effective in particular regions.

3.2.2.2 Timing

The previous section described two different means by which the FOM could be calculated
using different relative errors. The question that one must now consider is: what time should
be used to calculate the FOM? In an analog Monte Carlo simulation, this time is the runtime
of the Monte Carlo simulation, T = TMC . In a hybrid method, one could choose either

THybrid = TMC + TDeterministic, (3.13)

or
THybrid = TMC . (3.14)

The FOM should remain a constant–with the exception of very early on in an MC cal-
culation where statistics are very poor–for a problem. The issue with using Eq. (3.13) to
calculate the FOM is that the deterministic runtime does not change the relative error of
the Monte Carlo simulation. Thus, the FOM is not a constant throughout the Monte Carlo
simulation when using Eq. (3.13) as the time. However, it would be disingenuous to not
include the deterministic runtime into reports for the hybrid method, as the total compu-
tational time required to achieve some desired relative error is ultimately what the user is
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seeking. As such, two reports of the FOM are included with the results for each simulation:

FOMMC =
1

R2TMC

, (3.15a)

and

FOMHybrid =
1

R2(TMC + TDeterministc)
. (3.15b)

Note that the deterministic time used in Eq. (3.15b) is the time to run the transport and
generate source biasing and weight window values for each problem. It will not include the
time used to quantify the anisotropy as outlined in Section 3.2.1, as those parameters will
be computationally demanding but not normally included in a hybrid method computation.

In this section, four different equations to calculate the FOM were presented: two using
different relative errors, and two using different quantities for time. In analyzing the method,
all four will be presented: FOMMC,avg, FOMMC,max, FOMDet,avg, and FOMDet,max. Further,
the improvement in the FOM for each problem will be reported as those values normalized
by FOManalog,avg for the two FOMs calculated with the tally average relative error and
FOManalog,max for the FOMs calculated with the tally maximum relative error. The success
of the Ω-method will depend on its ability to improve each one of these FOM values.

3.3 Software

In this section, the software in which the methods presented in Section 3.1.2 are implemented
is described. A brief summary of each piece of software and what was added in each is
discussed. While the details of the inner-workings of the software will not be described here,
both pieces of software have rich documentation and user guides which an interested reader
may reference.

3.3.1 Denovo

Denovo SN is a three-dimensional discrete ordinates transport solver developed at Oak Ridge
National Laboratory [62]. Denovo is a module in the larger Exnihilo massively-parallel ra-
diation trasnsport code suite. There exist several other modules in Exnihilo. In addition
to Denovo, the most pertinent package being Omnibus, a frontend pre- and post-processing
module. The Ω-fluxes are generated by running two independent (a forward and an ad-
joint) determinstic solves in Denovo. The setup and generation of each simulation input is
automated through ADVANTG (see Section 3.3.2). After the calculation has reached the
desired convergence criteria, the full angular flux maps for the forward and adjoint solves
are saved to an HDF5 [72] file. Denovo was modified to output the full angular flux maps
for a simulation. The Ω-fluxes are then generated by passing the angular flux maps through
the postprocessing module in Omnibus. Using this module, the integration described in Eq.
(3.1) is performed, the scalar Ω-fluxes are saved to a SILO file, and the scalar fluxes are
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passed to ADVANTG for variance reduction parameter generation. Appendix A.1 contains
the code added to Omnibus to perform this calculation.

3.3.2 ADVANTG

ADVANTG [70] is a software package originally designed to automatically generate vari-
ance reduction parameters for the Monte Carlo radiation transport solver MCNP [9] using
the CADIS and FW-CADIS methods. For this project, the ADVANTG functionality was
extended to process the Ω-fluxes provided by Denovo through Omnibus and to generate
variance reduction parameters for CADIS and FW-CADIS using said fluxes. In addition
to the modifications required to perform CADIS and FW-CADIS, ADVANTG was further
modified to generate anisotropy quantification metrics and a modified version of the scalar
contributon flux, both of which were summarized in Section 3.2.1. The piece of code used to
reroute the Ω-fluxes through CADIS and FW-CADIS as well as to generate the anisotropy
metrics in ADVANTG is included in Appendix A.2.

Summary

In summary, this chapter presented the novel theory behind the Ω-methods; the metrics
by which the Ω-methods will be compared with existing hybrid methods; and the software
that was modified to implement the Ω-methods into an existing codebase. Two variants of
the Ω-methods were presented: CADIS-Ω and FW-CADIS-Ω, which are referred to together
as FW/CADIS-Ω. CADIS-Ω is a modification of CADIS, and is designed to generate VR
parameters for local solutions in problems with strong anisotropy. FW-CADIS-Ω is a mod-
ification of FW-CADIS, and is designed for generating VR parameters for global solutions
in problems with strong anisotropy.

Both CADIS-Ω and FW-CADIS-Ω are implemented in well-used, well-documented, massively-
parallel, state-of-the-art radiation transport and hybrid methods software. The radiation
transport code suite Exnihilo is modified to generate the Ω-fluxes. The hybrid methods
package ADVANTG is modified to generate VR parameters for the Ω-methods using the
Ω-fluxes.

To understand the performance of the Ω-methods and compare it consistently to existing
methods, several performance metrics were proposed. First, a few variants of the FOM were
described. They include: FOMMC,avg, FOMMC,max, FOMhybrid,avg, FOMhybrid,avg. Together,
they provide an overall picture of the performance of the Ω-method’s performance with
respect to relative error and time, rather than of a single criteria. Because anisotropy has
the ability to affect energy groups differently, resulting in different relative errors achieved
in different energy bins, separating out different FOMs helps to isolate interesting behavior
in the methods.

The Ω-methods are designed to work in problems with strong anisotropies in the flux. As
a result, several anisotropy metrics with which to investigate flux anisotropy were proposed.
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Using these metrics and comparing them to the relative errors or FOMs in each tally region,
we can try to understand the effect that anisotropy has on the Ω-method performance. Each
metric quantifies the anisotropy in cells differently, so each has the potential to capture
different information. Denovo was modified to output angular fluxes to generate the Ω-flux
for the Ω-methods. As a result, the anisotropy metrics use data generated from the existing
Ω-method calculation.

Using the methodology described in this chapter, the Ω-methods’ performance can be
fully characterized. Further, the characterization presented in this chapter has been extended
from standard FOM performance metrics to include anisotropy quantification. By imple-
menting the Ω-methods into production-level software, it is accessible to any user beyond
the author. The generation of the anisotropy metrics is also incorporated into the codebase,
meaning that any user could feasibly perform an investigation of the Ω-performance con-
sistent with what is proposed herein. The use of the various FOMs and of the aniostropy
metrics helps the understanding of the Ω-method performance as a function of time, error,
and anisotropy.
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Chapter 4

Characterization Problems and
Results

The Ω-methods have been presented in the previous chapters. In this chapter, the CADIS-
Ω-method is applied to a number of small, anisotropy-inducing problems. Recall that the
Ω-methods are a version of CADIS and FW-CADIS that use an adjusted contributon-based
flux rather than a pure-adjoint flux to generate biasing parameters. The CADIS-Ω-method’s
performance is compared to CADIS and standard nonbiased Monte Carlo. Because the Ω-
methods have been designed to generate variance reduction parameters in problems where
there is a strong degree of anisotropy in the flux, their characterization is dependent on
testing them in anisotropic problems. This chapter begins with a presentation of the char-
acterization problems that have been designed to induce anisotropy in the particle flux by
different physical mechanisms. The results of the Ω-methods when applied to these problems
follows. Two problems that highlight interesting aspects of the Ω-methods are subsequently
used in a deeper parametric study to determine the Ω-method’s sensitivity to different an-
gular flux information. Using the results obtained from this study, recommendations on
favorable parameters with which to run the Ω-methods are made.

4.1 Description of the Characterization Problems

In characterizing the Ω-methods, we aim to determine in which problems they perform well,
and then quantify that success. First, we must determine how effective the Ω-methods are
in reducing the variance for a tally result in Monte Carlo. This is done by assessing and
comparing the FOMs between different VR methods. Also, the method must be investigated
using a diverse set of anisotropic problems. By constructing problems that have different
mechanisms causing or inducing anisotropy in the flux, potential strengths or weaknesses of
the method can be isolated as a function of these mechanisms. In addition to comparing
the FOMs or REs between methods, another desirable metric by which to measure the
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method’s success given the degree of anisotropy in the problem. Recall that different means
of quantifying the flux anisotropy are described in Section 3.2.1. With a diverse selection
of characterization problems, we obtain variation in the flux anisotropy in each problem as
well as the resultant FOMs. This provides us with a path forward with which to use the
Ω-methods in a deeper angular-sensitivity study.

4.1.1 Identification of Anisotropy-Inducing Physics

There exists a rich history of using hybrid methods in problems with strong angular de-
pendence, as summarized in Chapter 2. Angular dependence may appear in a problem
through several means–both physical and computational. Mosher et al. [61] noted in their
threat-detection work with ADVANTG that problems with strongly directional sources and
problems with “thin” materials like air were difficult for ADVANTG to effectively reduce the
variance. They attributed this to strongly anisotropic behavior of the importance function
that were not reflected well by the scalar flux. Sweezy [65] also found that weight windows
obtained from a hybrid SN calculation were not good for a dogleg void problem, where ray
effects from the SN calculation generated poorer weight windows than a method without
ray effects 1. Though they did not observe ray effects in the importance map for the prob-
lem, Peplow et al. [52] also found that CADIS struggled with thin material streaming in a
spherical boat test problem.

The examples of angle-dependence in problems affecting hybrid methods’ success illus-
trate that the flux can have anisotropy resulting from more than one mechanism. Based on
these examples, we have identified several separate processes that affect the flux anisotropy.
These processes can be grouped into three categories:

• anisotropy in the flux resulting from strongly directional sources,

• anisotropy resulting from strong differences between material properties (this can be
due to differences in materials spatially or due to changes in interaction probabilities
as a function of energy),

• anisotropy in the flux from algorithmic limitations (ray effects).

These processes overlap. Consequently, this section continues with a brief discussion about
how each mechanism applies to anisotropic problems.

A strongly directional source is one that emits particles in a very small solid angle of
angle-space. The most extreme example of this would be a monodirectional source, while an
extreme opposite would be an isotropic source. This particular anisotropy-creating process
is source-specific and does not depend on the rest of the problem configuration. Our char-
acterization problems will have sources of both types to ensure the full parameter space is
covered.

1Recall from Sections 2.2.3 and 2.6 that ray effects are a nonphysical effect seen in the flux solution that
arise from the angular discretization of the problem. Ray effects are common in situations where there are
strong streaming effects or if a strong source is emitting particles with long mean free paths in the material.
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The next subset of anisotropy-inducing processes are those that result form strong differ-
ences between material properties. As noted, this can be from the geometric configuration
of the problem, or from variations in the cross sections within a geometric location. To
illustrate the differences in the way the problem can physically induce anisotropy in the flux,
several simple thought experiments will be presented.

Consider first the extreme example of material A which has some low absorption proba-
bility, and material B which is a pure absorber. Only particles that travel through material
A will eventually reach the tally location. This is an example of a type of problem with
strong material heterogeneity. In constructing a set of characterization problems, creating
channels through which particles will preferentially travel will induce anisotropy in the flux.
These types of flow paths are also of interest in shielding application problems, and were
discussed at length in Section 2.2.3. In this type of problem, material A can either have
a low scattering probability (airlike), or it can be highly scattering. In scattering events,
neutral particles can either lose very little energy with a high Z material, like lead, or they
can lose a lot of energy with a low Z material. These are considered separately, because the
energy spectrum of the particles affects the particle’s interaction probability.

Consider another example of an isotropic point source immersed in a pure thin material.
Because particles have a very low probability of interaction in the material, they will travel
almost uniformly outwards away from the point source. At some distance from the point
source, the majority of the particles in a cell will be traveling in the same direction. This
is an example of a problem with streaming paths. To summarize, we have identified several
sub-distinctions of this type of effect: regions with streaming where particles far from the
source are primarily monodirectional, regions that are highly scattering where particles have
a preferential flowpath through one material and are downscattered in energy, and regions
with strong material heterogeneity where particles have preferential flowpaths but are not
necessarily downscattered in energy. It should be noted that while streaming and scattering
problems will almost always be subsets of problems with material homogeneity, it is possible
to have a highly scattering or a streaming problem without material heterogeneity.

The last factor that can influence anisotropy in the flux solution is ray effects. While
ray effects are a result of anisotropy in the flux solution, this is a nonphysical effect and
can actually affect variance reduction performance. In the case of ray effects, we aim to see
if the Ω-methods are more robust in avoiding them in generating VR parameters. Because
ray effects are primarily seen in large regions with low interaction probabilities, some of the
characterization problems must incorporate these types of regions into their geometries.

In this subsection, four primary physical mechanisms by which the flux may be anisotropic
were identified. These are: streaming paths, problems with high scattering effects, prob-
lems with high material heterogeneity (specifically with materials with strong differences in
scattering and absorption probabilities), and problems with monodirectional sources. As
described in the preceding paragraphs, a few of these mechanisms may overlap with one
another. Together, they compose an assortment of anisotropy-inducing physics. Combined
with different geometric arrangements a diverse group of anisotropic problems can be for-
mulated.
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4.1.2 Problem Specifications

With the anisotropy-inducing physics described in Section 4.1.1, a set of characterization
problems that have different combinations of each of these effects can be conceptualized.
These problems provide an overview of how the Ω-methods perform in an assortment of
anisotropic problems. As previously described, these fall into two broad categories: anisotropy
caused by the problem materials and geometry, and anisotropy caused by the source defini-
tion. In the next several paragraphs, the material and geometric configuration of each prob-
lem will be described. This will be supplemented with an explanation of which anisotropy-
inducing physics are contained in each problem. A summary of which physics are in each
problem is provided in Table 4.1.

Labyrinths

The labyrinth problems have isotropic point sources on the left hand side of the problem
emitting a Watt spectrum of neutrons approximating the energy spectrum emitted by that
of 235U fission. On the right hand side of the problem there is a NaI detector recording the
flux. They are composed of a concrete maze with an air channel through the maze, and then
open air channels at either end of the channels. The first variant of the labyrinth has a single
turn, as illustrated in Figure 4.1, and the second labyrinth has multiple turns, as illustrated
in Figure 4.2. These problems are both likely to have ray effects in the air region near the
forward source. However, because far more scattering events will be required for a particle
to exit the channel in the multi-turn maze, ray effects will likely be less prominent in the air
region near the detector of that variant problem than in the single turn maze. Both problems
have strong differences in interaction probabilities between the air and the concrete, thus
they will have material heterogeneity. Further, because the concrete is composed of several
lighter-mass elements, these will also be highly scattering.

Steel beam in Concrete

Figure 4.3 is a variant problem with a steel beam embedded in concrete. A NaI detector is
located on the right hand side of the problem to record the response in CADIS problems. The
source is a 80x80 centimeter sheet pointed in towards the steel structure in the +x direction
emitting 10 MeV neutrons. Because the particles have preferential flow through the steel
but do do not have long streaming paths, this problem has material heterogeneity and will
be highly scattering, but will not have streaming paths in the shielding region. Further,
because the source is emitted from a thin plate in +x, it is monodirectional. This problem
may have some ray effects occurring from backscattering off of the steel and concrete in the
left side air region. It may also have ray effects exiting the beam on the right hand side.
However, because significantly more scattering will happen in the concrete, the ray effects
on the right hand side will be less pronounced than in the air exits of the labyrinths.
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Figure 4.1: Single turn labyrinth geometry.

Figure 4.2: Multi-turn labyrinth geometry.

U-shaped corridor

The U-shaped corridor illustrated in Figure 4.4 is somewhat similar to the maze variants
from Figs. 4.1 and 4.2. On the left-hand side of the corridor there is a point source emitting



CHAPTER 4. CHARACTERIZATION PROBLEMS AND RESULTS 65

Figure 4.3: Steel plate embedded in concrete.

Figure 4.4: U-shaped corridor in concrete.

a Watt spectrum of 235U neutrons. The right leg of the corridor has a NaI detector. Without
the large air voids in the labyrinth variants, the U-shaped corridor will have less prominent
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ray effects. The heterogeneity between the air and concrete will preferentially transport
particles through the air, and particles interacting with the concrete will downscatter in
energy.

Concrete shielding with rebar

(a) Slice at y = 100 centimeters

The shielding material illustrated in Figure 4.5 is built off of the steel structural beam
problem in Figure 4.3. However, this is a more realistic illustration of rebar in concrete.
In this problem, a NaI detector is used to measure the response on the right hand side of
the problem in yellow. The source is both space- and energy-dependent, emitting a Watt
spectrum of neutrons characteristic of 235U fission, and is distributed in a 100x160 centimeter
plate on the left hand side of the problem. The source is monodirectional in +x. The two
images provided show different xy-plane cutaways of the shielding, with steel rebar running
through the concrete in different directions. This problem will have angular dependence, but
preferential flowpaths through the concrete are not directed towards the detector location on
the other side of the shielding in some of the rebar. This problem has material heterogeneity
both in the concrete and between the concrete and air. This problem is highly scattering
from the concrete, and is unlikely to have ray effects without a strong single preferential
flowpath through the shield.
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(b) Slice at z = 105 centimeters

Figure 4.5: Concrete shielding with rebar.

Nuclear medicine therapy room

A small application problem relevant to the interests of this project is the therapy room
illustrated in Figure 4.6. This room has concrete walls, a water-based phantom that is
being irradiated by a monodirectional source in the room, and a hallway where a therapy
technician might walk. In a CADIS run of this problem, we seek to calculate the response in
the technician in the hallway from particles that are not absorbed by the patient in the room.
Because this problem is primarily air with concrete borders, it will have strong streaming
effects in the air. Particles that do make it to the technician will be produced by emission
from the patient in the room, by scattering off air or by scattering off walls. Because of the
high fraction of air in this problem, we also anticipate ray effects to occur. While there will
be scattering in this problem, it will not be as strong of an effect as other characterization
problems.

Now that the broad subset of characterization problems have been described, the physics
that each contains is summarized in Table 4.1. The table illustrates that it is difficult to
separate one cause of flux anisotropy from another in a characterization problem. This is
especially true in generating a problem that has ray effects without streaming paths, and in
constructing a highly scattering problem that has preferential flow paths but does not have
material heterogeneity. This is a deficiency of the characterization problem construction,
and is certainly an area that may be improved upon in future work.
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Figure 4.6: Therapy room geometry.

Problem Name
Problem Coverage

Streaming
Paths

Highly
Scattering

Material
Hetero-
geneity

Monodi-
rectional
Source

Ray
Effects

Single turn labyrinth x x x x
Multi-turn labyrinth x x x x
Steel plate x x x x†

U-shaped corridor x x x
Shielding with rebar x x x
Therapy Room x x x x

† May have ray effects in low density region exiting the metal plate, but effects will be less pronounced
than other problems.

Table 4.1: Anisotropy-inducing physics of each of the characterization problems. Each iden-
tified anisotropy-inducing physical metric is used in different combinations for the characteri-
zation problems. This will help to aid in extrapolating to which real problems the Ω-methods
may be applied.
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4.1.3 Introduction to Data Visualization and Analysis

At this point several characterization problems have been identified for their properties in
inducing anisotropy in the particle flux. Prior to going through the results for each of the
characterization problems, this section shows how the data for each problem is presented and
walks through the reasoning behind this approach to the analysis. This starts with example
tables and figures of the FOM and tally results. Then, plots explaining the anisotropy
metrics follow. This is accompanied by a discussion about how the anisotropy metrics can
be related to the FOM and the relative error.

Figure of Merit and Timing Tables

In Section 3.2.2 several equation variants of the FOM were presented as quantifications
of method success. The FOMs for each characterization problem are presented in tabular
form, similar to Table 4.2. As discussed in that section, the FOM is dependent on the
relative error and the time to obtain that relative error. For the hybrid cases, six different
FOMs will be presented: three FOMs based on the tally average relative error, the tally
maximum relative error, and the tally minimum relative error, and two FOMs based on
the Monte Carlo runtime and the hybrid runtime. The unbiased analog Monte Carlo does
not have a deterministic runtime, so only the three FOM variants based on the relative
error are presented for those runs. When analyzing the results in the FOM table for each
characterization problem, consider that the tally average relative error is calculated from
all particles contributing to all tally bins in the problem. Thus the FOM reported for the
tally average relative error may be outside of the bounds of the tally minimum or the tally
maximum relative error. Table 4.2 summarizes which equations were used to calculate each
FOM; each equation number is noted in brackets.

CADIS or CADIS-Ω analog
FOM Variant MC (3.15a) MChybrid (3.15b) MC

tally avg (3.12a) FOMavg,MC FOMavg,hybrid FOMavg,MC

max RE (3.12b) FOMmax,MC FOMmax,hybrid FOMmin,MC

min RE FOMmin,MC FOMmin,hybrid FOMmin,MC

time (mins) TMC Thybrid (3.13) TMC

Table 4.2: Table of FOM variants used to measure Ω performance. Relevant equations can
be found in Section 3.2.2 and are referenced in the table in parentheses.

Tables calculating the FOMs summarized in Table 4.2 may not have evaluated FOMS in
some locations. These will be noted with a dashed line, or “–”. These values will generally be
in the minimum relative error section of the FOM tables, and they represent a zero relative
error. This does not mean that infinite particles have been sampled (so the relative error
is infinitely small), but rather that no particles have been binned for that energy bin. This
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technically results in an infinite FOM, but in reality represents a bin that will never converge.
Because this value will hold no meaning in our quantification of the Ω-methods’ success, the
infinite valued FOM is not included.

Table 4.3 reports the times used to calculate the FOM values in Table 4.2 more detail.
This table is split into three vertical regions: the MCNP time spent doing Monte Carlo trans-
port (TMC), the deterministic time spent in ADVANTG/Denovo (Tdet), and the walltime
(Thybrid), which is the summation of the two. The deterministic time section contains further
segmentations of timing. This is because processes in ADVANTG are run using different
computational resources. ADVANTG itself is a driver script that can launch a paralellized
run in Exnihilo/Denovo, but it also postprocesses the Denovo fluxes into source biasing and
weight window parameters. The processes exclusive to ADVANTG, like generating the bias-
ing parameters, are performed in serial on a single processor. Conversely, all of the Denovo
calculation is run in parallel on any number of cores specified by the user. To ensure that
a comparable time is used when calculating the adjusted FOM, we have chosen to calculate
the total walltime spent in each calculation. Thus, the parallelized clock time is multiplied
by the total number of cores to obtain Tdenovo. This quantity is summed with the runtimes
of the other serial tasks to obtain the total deterministic runtime.

CADIS CADIS-Ω analog

time (minutes) time (minutes)
time

(minutes)

MCNP time total (TMC) TMC,cad TMC,cad−Ω TMC,analog

deterministic
time

advantg time
(Tadv)

0.18 0.18 –

denovo time
(Tdenovo)

5.69 25.64 –

dispose time 0.00 0.16 –
omega time
(TΩ)

– 0.66 –

total (Tdet) Tadv+Tdenovo Tadv+Tdenovo+TΩ –

wall time total (Thybrid)
TMC,cad +

Tdet,cad

TMC,cad−Ω +
Tdet,cad−Ω

TMC,analog

Table 4.3: Table of differing times used to measure Ω performance. These times are used to
calculate the FOMS in Table 4.2.

Two other times are listed under the deterministic time that may or may not be included
in Thybrid, which are TΩ and Tdispose. Tdispose is the reported times that are not included in
the calculation of Tdet in either CADIS or CADIS-Ω. It is a sum of time results that either
are not important to comparing the methods–like calculating the anisotropy metrics–or times
that are accounted for by other tasks in Tdet. This prevents overlap of times and provides a



CHAPTER 4. CHARACTERIZATION PROBLEMS AND RESULTS 71

more realistic comparison between the performance of both methods.
The reported Ω time, TΩ, is the total time spent in the tasks unique to the Ω-methods.

This includes reading in the angular flux files, performing the computation of Eq. (3.1), and
writing the Ω-results to a file. The Ω time, though run in Denovo, is still a serial calculation
so is separated out from the total Denovo time. The Ω-method tasks at this time are not
parallelized, so the clock time is treated in the same way as the reported ADVANTG time.
Because the majority of the Ω-flux generation infrastructure is implemented in Exnihilo
rather than ADVANTG, future expansions of the method could be parallelized for faster
clock times.

Because the adjusted FOM (the FOMs labeled FOMhybrid in Table 4.2) uses THybrid, which
is the total runtime of the Monte Carlo calculation (TMC) and the hybrid/deterministic run
preceding it (Tdet), it will differ between the Ω-methods, standard CADIS, and standard
FW-CADIS. For CADIS, Tdet is the sum of the ADVANTG runtime and the wall time of
the Denovo transport. For CADIS-Ω, this is the sum of the ADVANTG runtime, the wall
time of the Denovo transport, and the time spent in the Ω-flux calculation. How each time
is calculated is summarized in Table 4.3.

Beyond adding the Ω-flux compute time, CADIS-Ω will generally have much longer De-
novo runtimes than CADIS. This is a combination of the Ω-methods’ requirement of both
a forward and adjoint calculation (recall that CADIS requires only the adjoint calculation),
and that the Ω-methods require full angular flux solutions to calculate the Ω-flux. While
standard CADIS has the ability to print the full angular flux solutions as CADIS-Ω, it is
neither a requirement nor is it standard practice. The I/O demands to both write the angu-
lar fluxes and then read them back in is a potential bottleneck in the method based on the
current implementation.

Tally Result and Relative Error Plots

Each of the problems introduced in Section 4.1.2 has a 10x10x10 cm detector in which
the tally response is calculated. The tallies are discretized in energy; the tally result and
associated relative error are tabulated for each energy bin. Some of this information can be
inferred from Table 4.2, but seeing the distribution of the relative errors for each energy bin
for each method is a useful way of seeing how effective each method is at biasing particles all
of the tally bins, without time effects. As described in the previous paragraph, CADIS-Ω’s
deterministic time will be longer than CADIS’, so the FOMhybrid may be lower for the Ω-
methods, even if the relative errors are better. Presenting both the relative error distribution
and the FOM will provide a clear picture of the performance of the Ω-methods.

The tally results and relative errors for CADIS, CADIS-Ω, and the nonbiased analog
Monte Carlo will be presented in figures similar to 4.7a and 4.7b. In the case where the
relative error of the nonbiased analog Monte Carlo far exceeds the errors achieved by CADIS
and CADIS-Ω, it will be omitted. The example given in Figure 4.7b shows a result where
this is the case. The hybrid methods will be marked with a dashed line; the nonbiased analog
Monte Carlo will be a solid line.
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(a) Comparison between methods of the tally result.
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(b) Comparison between methods of the tally relative error.

Figure 4.7: Sample results for a characterization problem tally.
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Anisotropy Metrics

Equations (3.6) through (3.11) in Section 3.2.1 presented several different ways by which
the anisotropy of each problem could be quantified. As discussed in that section, Each
metric will show slightly differing effects. For example, the ratio of the Ω- to adjoint-flux
in metric two will differ significantly from the angular contributon max to average of metric
three. The Ω-flux may be larger or smaller than the adjoint scalar flux depending on the
directionality of the adjoint and forward particles relative to one another. If the particles
are travelling in opposite directions, this will result in a larger omega flux than the adjoint
flux. If they stream in the same direction (away from the tally detector, for example), then
the resultant Ω flux will be smaller than the adjoint. In the case of the angular contributon
max to average the distribution will have a lower limit where the maximum is very close to
the average contributon flux. It can never be lower than the average. In a isotropic problem,
the majority of the cells in the problem will be this ratio, whereas in a strongly anisotropic
problem this distribution will shift upwards, but will still have the same limiting lower value
as the isotropic case.

To illustrate the effect of how different the anisotropy metrics’ distributions are, Figure
4.8 shows stripplots for all of the anisotropy metrics for three different energy groups in
one of the characterization problems. The effects of thermalization–and consequently more
induced isotropy–on each of the metrics can be seen clearly as one scans from Fig 4.8a to
4.8c.

The adjoint anisotropy metric, the forward anisotropy metric, and metric three are all
shifted by a factor of 4π. Their natural lowest limit should be near unity but all lie lower.
This may be corrected in the future, but for the purposes of this analysis we are more
interested in the relative distribution and the consistent factor of 4π is not important to that
effect.

A stripplot shows distinct data points, but easily can be overwhelmed if the full number
of cells is used in a single strip. The figures in 4.8 contain a random selection of 1500 data
points from the full anisotropy datasets, which is only a small fraction of the number of
cells in the characterization problem meshes. There are other ways to visualize the full
distribution of the dataset. Figure 4.9 shows three modes by which an anisotropy metric can
be visualized. These plots, unlike Figure 4.8, show a single metric but all energy groups. The
highest/fastest energy group is plotted in deep red, and the lowest or most thermal energy
group is shown in blue.

All three subfigures in 4.9 show the effects of thermalization on the chosen metric dis-
tribution and density. The stripplot of 4.9a is a clear representation of the density, but not
much more can be ascertained about the distribution of the metric. Figure 4.9b has box
and whisker plots that show the data quartiles, the mean, and outliers. However, in the
case where the distribution is heavily towards a limiting value, the mean is hard to separate
from the distribution. Further, no data on how the metric is distributed beyond the quartile
markers is provided. The violin plot of Figure 4.9c is a hybrid of the former two plots. The
width of the violin is related to the density of values, but inside the violin the limits of the
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(a) Example distribution of anisotropy metrics for fastest energy group.
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(b) Example distribution of anisotropy metrics for epithermal energy group.

box plots are marked in black. The violin limits extend to the outliers.
The analysis for each of the characterization problems look at the result for the tally

average relative error, the tally maximum relative error, and the tally minumum relative
error. Because we are interested in how the relative error in each energy bin changes with
respect to CADIS-Ω and CADIS, the plots showing the distributions over all energy groups
for a single metric is generally more applicable than the plots for a single energy group but
with all metrics. As a result, future plots of the metrics will be in the style of those in Figure
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(c) Example distribution of anisotropy metrics for thermal energy group.

Figure 4.8: Example distribution of all anisotropy metrics for highest, intermediate, and
lowest energy groups.
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(a) Example distribution of M4, all energy groups, strip plot.

4.9 rather than 4.8.

Filtered Anisotropy Metrics

Beyond plotting the anisotropy metrics as a function of energy group, we are interested in
how the relative error or FOM will respond as a function of each metric. However, not all
cells in the problem are as important as others to contributing to the tally. A cell on the
problem boundary is very unlikely to contribute to the tally result when compared to a cell



CHAPTER 4. CHARACTERIZATION PROBLEMS AND RESULTS 76

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Energy Group No.

10-2

10-1

100

101

R
el

at
iv

e 
M

et
ric

 D
is

tri
bu

tio
n

Metric Four Distribution, by Energy Group, Full Anisotropy Dataset

(b) Example distribution of M4, all energy groups, box plot.
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(c) Example distribution of M4, all energy groups, violin plot.

Figure 4.9: Different ways of visualizing M4 for a characterization problem.
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(a) Example distribution of M2, all energy groups, violin plot



CHAPTER 4. CHARACTERIZATION PROBLEMS AND RESULTS 77

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Energy Group No.

10-4

10-3

10-2

10-1

100

101

102

R
el

at
iv

e 
M

et
ric

 D
is

tri
bu

tio
n

Metric Two Distribution, by Energy Group, Values Above the Median Contributon Flux

(b) Example distribution of M2, all energy groups, violin plot using only datapoints above the
median metric value in each energy group.
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(c) Example distribution of M2, all energy groups, violin plot using only datapoints above the mean
metric value in each energy group.

Figure 4.10: M2 violin plots using different selections of the metric data.

next to the adjoint source. As discussed in Section 2.2.3, the contributon flux measures the
response importance of a cell. By selectively choosing anisotropy metrics from cells that are
likely to induce a response, some of the noise of less important cells can be cut out.

To consistently cut out the same number of datapoints across all metrics, we have chosen
to use a filtering algorithm based on the contributon flux in each cell. The first filter is
choosing metric values from cells where the contributon flux is above the problem median
contributon flux. This median is evaluated separately for each energy group to ensure that
the same number of cells in each group is plotted. The second filter is choosing metric
values from cells where the contributon flux is above the problem mean contributon flux.
Again, the mean is computed separately for each energy group such that energy groups with
higher contributon fluxes do not cut out important flux values from a different energy group.
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However, unlike the median filter a different number of cells for each energy group will be
filtered. This is dependent on the skew between the contributon mean and median value for
each energy group. Because the filter is evaluated based on the contributon flux, it can be
applied to each metric consistently, meaning that the same number of cells are filtered out
between different metrics.

Figure 4.10 shows the effects of cutting out data from unimportant cells on the M2

distribution. The first figure in the series, 4.10a, is the M2 full distribution. As discussed
previously, M2 will be above unity in cells where the foward and adjoint angular fluxes
travel in opposing directions, and will be below unity in cells where they travel in the same
direction. Very unimportant cells should be below unity. Applying the first filter–selecting
values above the contributon median–to this distribution results in Figure 4.10b. The bottom
tails of all of the distributions have been shortened, but still many unimportant cells remain.
This should be expected, as only half of cells have been removed. Applying the second filter
results in Figure 4.10c. The unimportant tails have been almost completely removed from
the M2 distributions. Further, features in the metric distribution once obviscated by the
tails are now visible.

Improvement Factor Correlations with Anisotropy

Now that a way of visualizing the metric distributions has been presented, we seek to find
how the metric distributions relate to the relative error or FOM for a given problem. First,
an improvement ratio for the relative error and FOM will be defined. For the relative error
it is

IRE =
RECADIS−Ω

RECADIS

∣∣∣∣
Eg

, (4.1)

and for the FOM it is

IFOM =
FOMCADIS−Ω

FOMCADIS

∣∣∣∣
Eg

. (4.2)

These will be henceforth be referred to as the relative error and FOM improvement factors.
With this definition of the improvement in the FOM or the relative error from CADIS to
CADIS-Ω, we now have a comparison between the updated and standard methods. By
relating this metric to the anisotropy metrics, we can see how anisotropy of the problem
influences the improvement in the relative error or the FOM.

There are several ways in which the improvement factor IRE or IFOM may be compared
against the anisotropy metrics. The first are against the metric mean and median values. A
plot of I versus either of these values should look very simiar, with some shifting depending
on the distribution. However, if the mean and median are shifted significantly, this would
indicate a skew of the distribution. This skew may also be correlated with either of the I
values. Last, it is possible that the spread of metric values may be correlated with the I
factor. Figure 4.11a is an illustration of how I can be plotted with each of these measurements
of the metric distribution.
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(a) M3 average, mean, skew, and variance plotted against the relative error improvement IRE
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(b) M3 data selection above the metric median for each energy group, value average, mean, skew,
and variance plotted against the relative error improvement IRE
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(c) M3 data selection above the mean for each energy group, value average, mean, skew, and
variance plotted against the relative error improvement IRE

Figure 4.11: Sample scatterplots of the M3 distribution against the relative error improve-
ment factor, IRE.

Similar to using the filtering algorithms in Figure 4.10, the data in the statistical trend
plots can also be filtered. The subfigures in 4.11 illustrate how filtering out the data by the
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contributon flux influences the location of IRE for each energy group. Figure 4.11b calculates
the metric mean, median, skew, and variance for each energy group using only metric values
in cells above the contributon median. Conversely, Figure 4.11c calculates the metric mean,
median, skew, and variance for each energy group using only metric values in cells above the
contributon median value.

The dots in each plot correspond to the same energy groups plotted in 4.10. That is,
the lowest energy is plotted in blue and the highest in red. Note that this type of plot is
possible because the Monte Carlo tally has been discretized to have the same binning as the
the deterministic code. It would be far more difficult if the energy bin widths of the Monte
Carlo tally did not match the deterministic code.

The data that will be presented for each characterization problem can be subdivided
into three distinct categories: data primarily obtained by the Monte Carlo calculation, data
primarily obtained by the deterministic calculation, and data that is a combination of both.
The FOM values using Monte Carlo runtimes, for example, is in the first category. The
anisotropy metrics presented in Section 3.2.1 are an example of a determinstic-exclusive
dataset. The results presented in Figure 4.11 are a combination of both deterministic and
Monte Carlo-influenced results. In studying the Ω methods, we seek to understand how the
Ω methods’ performance influence the Monte Carlo results. Beyond observing the FOM and
relative error distribution obtained in the Monte Carlo, the anisotropy metrics will provide
another avenue by which to investigate Ω-method performance.

One may have deduced that the results for the characterization problems and the sub-
sequent angle sensitivity study will be substantive. Only the most pertinent fraction of the
available data will be presented with each problem in Sections 4.2 and 4.3. For example, in
most cases only a single figure–and perhaps only a single metric–from the three presented in
4.11 will be presented for a particular problem, because only one will show a trend relevant
to the Ω-methods’ performance. A more extensive set of data and figures is accessible in the
public repositories listed in Appendix A.

4.2 Characterization Problem Results

To quantify the Ω-method success for a variety of anisotropy-inducing physics, we will present
various forms of the Figure of Merit, as described in Section 3.2. In the preceding subsections,
a subset of flux anisotropy-inducing physics have been identified and a subset of problems
that contain these physics have been conceived. In this section, the results for CADIS-Ω,
CADIS, and nonbiased Monte Carlo will be presented for each of these problems. Expla-
nations on the performance of the Ω methods will accompany the results for each problem.
In some cases, variants of problems were run to confirm or refute observations seen in other
problems.
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4.2.1 Computational Specifications

As noted in a number of the previous sections, hybrid methods require both a deterministic
and a Monte Carlo calculation to obtain a problem result. These transport codes require dif-
ferent computational parameters to obtain an answer. For the characterization problems the
computational parameters are summarized in Table 4.4; the parameters for the deterministic
and Monte Carlo calculations are demarcated in the table.

Parameter Type Parameter Value

ADVANTG Values

PN Order 3
Quadrature Type Quadruple Range
Quadrature Order 10
Spatial Solver Step Characteristic
Energy Group Library† 27G19N
Boundary Conditions vacuum

MCNP Values

Particle Count 1e7
Boundary Conditions vacuum

† Parameter type that has no default in ADVANTG.

Table 4.4: Default simulation values for the characterization problems. The values for AD-
VANTG primarily signify parameters used to run Denovo, with exceptions for calculating
biasing parameters, which is done exclusively in ADVANTG. MCNP-specific values are those
used for Monte Carlo runs.

The first portion of the table summarizes the values used by ADVANTG. Note that these
values all pertain to the Denovo deterministic solver, which is set up by ADVANTG. The
parameter types marked with a dagger have no default in ADVANTG. We have chosen to use
a relatively course 27 group energy group library. Because the characterization problems are
meant to identify the method’s performance pertaining to flux anisotropy, and we expect the
energy group structure to have less of an effect on anisotropy conditions than other param-
eters, we opted for a computationally inexpensive energy group mesh for the deterministic
solver. Further, this group library was designed for radiation shielding applications, so it
applies to the majority of the characterization problems.

The boundary conditions for all of the characterization problems will be vacuum. At
this time, ADVANTG does not support reflective or mirror boundary conditions so this is a
limitation in application space that we cannot address at this time. The Monte Carlo code
we use does support vacuum boundary conditions, but a discrepancy in boundary conditions



CHAPTER 4. CHARACTERIZATION PROBLEMS AND RESULTS 82

between deterministic and Monte Carlo calculations would result in the simulation of a
fundamentally different problem.

Unless noted, the values in this subsection of the table are ADVANTG default values.
They are a good initial choice for characterization of the method because they are often
chosen as the parameters for hybrid methods studies by experienced and inexperienced
ADAVANTG users. Further, these values are defaults in ADVANTG for their computa-
tional stability, such as not having negative valued weights or fluxes, stable convergence, a
relatively fast time to a solution, et cetera. Due to the good properties exhibited by the
solver options and because users first using the Ω-methods are likely to choose these values,
the values in Table 4.4 will be used for the characterization of the Ω-methods.

The latter section of the table summarizes the Monte Carlo code MCNP values for each
of the problems. The value of 1e7 particles as a particle cutoff was chosen because it made
the error bins in the majority of the nonbiased Monte Carlo characterization problems less
than 100%. In some problems that are extraordinarily difficult for Monte Carlo to solve
without biasing, there were tally bins with very high errors. In the following subsections
they will be clearly indicated and their results will not be plotted so as to not obfuscate the
CADIS and CADIS-Ω results. Time cutoffs were not chosen because we decided to measure
how effective the Ω methods were at reducing the variance per particle. Depending on the
flux maps generated from CADIS and CADIS-Ω, the time to transport a finite amount of
particles may vary. As a result, the reported times from a simulation can tell us whether
the method requires more sampling than other methods in addition to how fast it takes to
reach a desired relative error.

The responses in the NaI detectors of each of the problems was measured with an MCNP
track length tally (f4). The tally was energetically binned to match the dataset of the
multigroup dataset provided in ADVANTG, and the entire volume of the detectors were
used with no spatial binning. It should be noted that while the tally is energetically binned,
Monte Carlo transport is not discretized in space or energy like deterministic transport. In
a nonbiased analog Monte Carlo calculation, transport is completely continuous in space,
energy, and angle. In a hybrid calculation using VR parameters from a deterministic solution,
the VR parameters will be discretized to reflect the solution obtained from the determinstic
solver. As a result, the particle’s transit throughout the problem will be a combination of
sampling both continuous and discretized-energy dependent factors. Consider a particle that
goes through a scattering event in shielding material. In this scattering event, the particle
samples from a continuous-energy cross section and changes direction based on its energy.
However, depending on how much energy it loses in the scattering event it may cross into
the energy range of a lower-energy weight window and will require further sampling.

All characterization problems were run on Remus, a machine operated and maintained by
the Radiation Transport and Nuclear Systems Division at Oak Ridge National Laboratory.
The ADVANTG runs were run on 16 cores of a 32 core node, with 256Gb of memory. The
MCNP runs were run on the same machine, with 256Gb of memory but using all 32 cores
of the node.

Each problem presented in Section 4.2 will use the values specified in Table 4.4 unless
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otherwise noted. Times to transport the Monte Carlo particle quantity varies between meth-
ods due to differences in sampling. Monte Carlo and ADVANTG inputs and directions on
how to acquire them are provided in Appendix A.3.

4.2.2 Single Turn Labyrinth

The analysis of the characterization problems begins with the single turn labyrinth. The
single turn labyrinth FOM results are summarized in Table 4.5, and are illustrated in Figures
4.12 and 4.13. The table has six FOM values for CADIS and CADIS-Ω results, and three
FOM values for the analog (nonbiased) Monte Carlo results. The equations to calculate each
of these FOMS is summarized in Table 4.2.

CADIS CADIS-Ω analog
MC MChybrid MC MChybrid MC

tally avg 18.6 14.9 2.36 1.56 17.4
max RE 2.76 2.21 0.481 0.318 0.0857
min RE 249 200 196 130 –
time (mins) 67.7 84.4 157 237 11.7

Table 4.5: Figure of Merit comparison for single turn maze. The relative errors used are the
tally average relative error, the tally maximum relative error, and the tally minimum relative
error; the times are total walltimes for the Monte Carlo calculation and the sum of the hybrid
method software, the deterministic transport time, and the Monte Carlo calculation time.

CADIS CADIS-Ω analog
time (minutes)

MCNP time total 67.71 157.01 11.67
deterministic time advantg time 0.26 0.28 –

denovo time 16.41 78.19 –
dispose time 0.01 0.40 –
omega time 0.00 1.61 –
total 16.67 80.08 –

wall time 84.38 237.09 11.67

Table 4.6: Detailed timing results for single turn maze.

In Table 4.5 the FOM results for CADIS, CADIS-Ω, and nonbiased Monte Carlo for
the single turn maze are presented. In all cases, the CADIS FOMs are better than those
obtained by CADIS-Ω. The FOMS calculated using the tally average relative error are
better in the nonbiased analog Monte Carlo than CADIS-Ω as well. However, this is a
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product of two effects: the time for the analog to run the same particle count is far shorter
than either CADIS or CADIS-Ω. As a result, to obtain the same FOM, CADIS-Ω needs to
have R1/R2 =

√
T2/T1 (this is from taking a ratio of the FOMs) the tally average relative

error, or 0.27. Because this problem is highly scattering and many low-energy particles
can make it through the concrete labyrinth, even the analog can have good sampling at low
energies, resulting in a tally average FOM that reaches this threshold.

Table 4.6 contains more detailed timing information spent in each of the codes for each
type of problem. We can see that the Monte Carlo runtime for CADIS-Ω is more than twice
that of CADIS, and almost fifteen times that of the nonbiased analog Monte Carlo. The time
to run just the hybrid/deterministic portion of the calculation is also four times longer for
CADIS-Ω than it is for CADIS. These disparities in runtimes have a strong negative impact
on the CADIS-Ω FOMs, which was observed in the FOM results in Table 4.5.
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Figure 4.12: Tally results comparison between methods for single turn labyrinth.

Figures 4.12 and 4.13 show the tally result and the relative errors for each result in the
single turn maze, respectively. This particular relative error plot, Figure 4.13, does not
include the relative error bins of the analog result because they are significantly higher than
the CADIS and CADIS-Ω results. This is further confirmed in Table 4.5, where the minimum
relative error FOM is a non-tallied bin.

By inspecting Figure 4.12, one can observe that the CADIS and CADIS-Ω results are
in agreement in bins greater that 10−7 MeV. At lower energy bins, CADIS-Ω generally
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Figure 4.13: Tally relative error comparison between methods for a single turn labyrinth.

has a higher value for the tally result than standard CADIS. However, in comparing the
errors for these low energy bins in Figure 4.13, CADIS has a lower relative error. This
indicates that CADIS sampled many more low-weight particles than CADIS-Ω in these
regions. Conversely, CADIS-Ω has a lower calculated relative error than CADIS for bins
greater than 5 ∗ 10−6 MeV. This is expected, as higher energy particles generally exhibit a
stronger angular dependence than low-energy particles. In geometric and energetic regions
where the angular dependence is stronger, the importance map generated by CADIS-Ω may
show more of an effect in improving the relative error.

To aid in our understanding of how the Ω-method’s importance map differs from the
standard adjoint flux map, let us compare the flux distributions obtained by different de-
terministic solutions of the single turn labyrinth. Figure 4.14 shows several different flux
distributions that represent the single turn labyrinth geometry. This figure is of the highest
energy group for each flux type.

Figure 4.14a shows the forward flux for the labyrinth. It is clear that in this problem,
particles emenate isotropically outwards from the source on the left side of the problem.
Some particles travel towards the shield and enter the labyrinth. These particles travel 50cm
and hit the wall in the first turn of the labyrinth. Many high energy particles reach fairly
deep into the concrete past this turn, as indicated by the green channel partway through the
concrete.
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(a) Forward flux map for highest energy group, single turn labyrinth.

(b) Adjoint flux map for highest energy group, single turn labyrinth.

Figure 4.14b complements Figure 4.14a by showing the adjoint flux distribution for the
fastest energy group. Recall that this distribution is what is used by CADIS to generate
VR parameters. Particles are generated throughout the NaI detector and exit the detector
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(c) Contributon flux map for highest energy group, single turn labyrinth.

in all directions. Because the source is not in line with the labyrinth entrance, particles end
up colliding much closer to the labyrinth edge than in the forward distribution. There also
exist some prominent ray effects in this distribution on the right hand side of the problem.
In particular, the contrasting orange and green fingers of the ray effects show at least an
order of magnitude change in the flux for forward particles exiting the maze in this region.
In reality, the importance in this region should be close to a spherical surface some distance
away from the adjoint source.

Recall that the Ω-flux is computed using the angle-integrated contributon flux in the
numerator. For this problem, the contributon flux will be used to illustrate how the Ω-flux
is a combination of the adjoint and the contributon flux. Figure 4.14c shows the distribu-
tion of angle-integrated contributon flux values for the single turn labyrinth. Interestingly,
because so many forward particles penetrated deeply into the shield, the contributon flux
points directly into this section of the shield. It is also clear that near the forward source,
only particles moving in the direction towards the labyrinth entrance contribute to a high
contributon flux. In the left-side of the labyrinth, we can observe directional importance in
the labyrinth channels, but in the first turn this directional importance is no different than
the concrete barriers surrounding the channels.

Figure 4.14d shows how the Ω-flux is built off of the adjoint and contributon fluxes
by showing the Ω-flux distribution for the single turn labyrinth. Comparing this figure to
4.14c, the majority of high flux regions are pushed back towards the NaI detector. The
flux gradient exiting the maze does not span as many orders of magnitude as it did in the
contributon flux plot, too. Further, the importance of particles does not remain as high or
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(d) Ω-flux flux map for highest energy group, single turn labyrinth.

Figure 4.14: Flux map slice of single turn labyrinth. Flux maps have scales normalized to
maximum and minimum values for each slice; between plots the scales are not consistent.
These plots show the highest energy group, group 000, for each cell in the problem midplane.

go as deep into the concrete shield as the contributon flux plot. This is because the Ω flux
normalizes by the forward flux, resulting in reducing importance in regions where only the
forward flux is strong. As with the contributon flux, the Ω-flux strongly reduces particle
importance near the problem boundaries. Recall from Section 2.2.3 that in the contributon
transport equation that the cross section becomes very high near problem boundaries, thus
encouraging particles back towards the problem source and sink. Because the Ω-flux uses
standard forward and adjoint transport, the cross section is not manipulated. However, the
flux magnitude reflects importance consistent with contributon theory.

Both the Ω- and the contributon fluxes show a mitigation of ray effects on the right hand
side of the problem. Note that there are no “fingers” of flux magnitude at distances several
cm away from the NaI detector on the right side of the problem in either Figure 4.14c or
4.14d. Reducing these numerical appiritions is a positivie effect of the method. However,
there exists a fairly strong gradient in flux magnitude for a particle travelling directly out
of the maze exit. As a result, a particle traveling several cm of distance across this strong
gradient line may move from a region of very low importance to very high importance,
causing very significant sampling requirements for the Ω-importance that may not exist
with the standard adjoint.

A description of filtering algorithms accompanied the discussion of the anisotropy metrics
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in Section 4.1.3. The filtering algorithms are based on the contributon flux distribution in
the problem, or 4.14c. Recall that the two filter matrices discussed included those from cells
where the contributon flux is above the average contributon flux value, and where values
are above the mean contributon flux value. For the single-turn labyrinth, the filter matrix
in the highest energy group (Figure 4.14c) will use values in the orange and pink region of
the figure and exclude values from the blue and green regions of the figure. As a result, only
anisotropy metric values from within the maze will be used. The very anisotropic values near
the edge of the problem (where significant particle streaming exists), will not be included
because they are likely to be inconsequential to the tally response.

Figure 4.15: Ω-flux flux map for lowest energy group, single turn labyrinth.

Figure 4.15 shows the Ω-flux distribution for the lowest energy group. This differs quite
a bit from 4.14d in that the flux in the labyrinth has a much stronger gradient once entering
concrete than the higher energy group. This is expected, as the mean free path of a low energy
neutron is much shorter than a high energy one, especially in a dense, hydrogenous material
like concrete. As a result of the stronger flux gradient in concrete, low energy particles
entering the concrete shield will be rouletted at a much greater frequency than high energy
particles. Particles exiting the labyrinth also have a lower gradient of importance that they
may cross than in the high energy flux map. As a result, particle splitting and rouletting in
this air region will be less extreme at low energies than at high energies.

Comparing the figures of Ω-fluxes in 4.14d and 4.15, we can start to explain some of
the timing behavior observed in Tables 4.5 and 4.6. High energy particles exiting the maze
towards the tally detector have much longer mean free paths than the low energy particles,
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and will generally show a much stronger effect in the Ω-flux in those regions. This is illus-
trated in Figure 4.14d. The shape of the Ω flux around the detector region is much more
strongly dependent on direction in the high energy group 000 flux than it is for the lower
energy group 026 flux. Despite having lower relative errors than CADIS at higher energies,
CADIS-Ω has lower FOMs than CADIS for the FOMS calculated with the minimum relative
error. As discussed previously, this is due to the long runtime of CADIS-Ω, which is more
than twice as long as CADIS. From this, we can conclude that while CADIS-Ω is better at
transporting particles in high energy regions than CADIS, achieving lower relative errors,
the length of time to do so is prohibitive and achievable by CADIS should the runtimes be
the same for both.

4.2.3 Multiple Turn Labyrinth

The multiple turn labyrinth is built off of the single turn labyrinth geometry. The labyrinth
materials are much the same, but the geometry differs. Table 4.7 summarizes the Figure of
Merit results for CADIS, CADIS-Ω and nonbiased Monte Carlo. Figures 4.16 and 4.17 show
the results obtained by the track length tally in each method.

CADIS CADIS-Ω analog
MC MChybrid MC MChybrid MC

tally avg 327 248 224 71 0.054
max RE 1.46 1.11 1.02 0.322 0.0393
min RE 113 85.6 71 22.5 –
time (mins) 51.5 68 35.5 112 25.5

Table 4.7: Figure of Merit comparison for multiple turn maze.

CADIS CADIS-Ω analog
time (minutes)

MCNP time total 51.52 35.55 25.46
deterministic time advantg time 0.25 0.21 –

denovo time 16.28 74.85 –
dispose time 0.01 0.40 –
omega time 0.00 1.74 –
total 16.53 76.80 –

wall time 68.05 112.35 25.46

Table 4.8: Detailed timing results for multiple turn maze.

In Tables 4.7 and 4.8 it is notable that the CADIS-Ω runtime is shorter in the Monte
Carlo simulation than CADIS. This differs most of the other cases presented in this section.
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However, it is also notable that because the deterministic time is so much longer for CADIS-
Ω, Thybrid ends up being greater for CADIS-Ω than CADIS.

Table 4.7 shows that both CADIS and CADIS-Ω outperform the analog by a factor of 102

or 103, indicating the necessity of variance reduction for a problem like this. In comparing
the FOMs, CADIS slightly outperforms CADIS-Ω for all relative errors, meaning that the
time to reach any relative error will be achieved faster by CADIS.
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Figure 4.16: Tally results comparison between methods for multiple turn labyrinth.

Looking at Figures 4.16 and 4.17, we can see that the analog Monte Carlo results differ
significantly from either CADIS or CADIS-Ω. Two distinct regions of tally bins have been
recorded in the analog case: a high energy region comprised of particles that have scattered
very few times before reaching the detector, and a much smaller low energy region, comprised
of particles that are very thermal. These thermal particles have a very small mean free path
in the concrete labyrinth, thus the majority of them were absorbed in the shield. However,
given the errors on this result, these results are not trustworthy. In the case of this problem,
some of what was discussed in the single-turn labyrinth is confirmed. This particular case
requires that particles scatter several more times if they are to exit the labyrinth from the
air duct. As a result, the spectrum is more thermal than the first case and the problem
has less anisotropy from the scattering effects. As discussed in the single-turn labyrinth
subsection, CADIS outperformed CADIS-Ω in problems in energy bins that had less angular
dependence. Because this problem has far more scattering event, it overall has less angular
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Figure 4.17: Tally relative error comparison between methods for a multiple turn labyrinth.

dependence and CADIS outperforms CADIS-Ω in all energy bins. This problem is poorly
suited to CADIS-Ω.

Figure 4.18 shows the adjoint and Ω flux maps for the lowest energy group at the problem
midplane for the multiple turn labyrinth. These figures look remarkably similar, showing
that this problem does not have significant anisotropy to capture. The region that does
differ is near the detector region, where the region of high importance is focused towards
the labyrinth and the laybrinth exit. The other region with noticeable difference is located
at the entrance to the maze. These figures show the lowest energy group particles, so for
forward particles of this energy to go the same direction as adjoint particles, they must have
gone into the labyrinth, scattered back out, and then scattered again. As a result, we do not
see a strong directional dependence in the Ω-flux plot in the region near the forward source.
The adjoint flux plot shows more of a streaming effect from the adjoint particles that exit
the maze.

In Section 4.2.2, it was discussed that higher energy regions that contribute to the tally
are more anisotropic, and that these regions benefit more from the Ω-flux map than they do
with standard CADIS’ importance map. Using the anisotropy metrics from Section 3.2.1,
let us compare the anisotropy distributions of the single turn and multiple-turn labyrinth
problems. Figure 4.19 are violin plots of the M3 distributions of the labyrinth problems.
To filter out values of the metric distribtuion that do not have a strong importance to
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(a) Adjoint flux map for lowest energy group, multiple turn labyrinth.

contributing to the tally, only values from cells above the contributon flux mean value are
included in the violins.

First, looking at the metric three distributions for both the single- (4.19a)and multiple-
turn (4.19b) labyrinths, we can see that the violins in both plots shift from a fairly small
grouping of values at high enrgies to a broad range of values at low energies. The bottom of
the violin in each group also tells us a bit about the metric distribution. Because only values
from “more important” cells have been included in these distributions, the bottom cutoff
tells us how anisotropic the cells of median importance might be. It also tells us how many
cells have high-valued anisotropy metrics. For both the single- and multi-turn labyrinths,
we see higher-valued cutoff point in high energies than in low energies. This indicates that
more cells in high energies have higher values of M3.

The violin plots of the multi-turn labyrinth (Fig. 4.19b) tend to span a larger range of
values. That is, the violins tend to be longer. All of the violins in both plots have a bounding
upper limit, meaning that in every energy group there are some very anisotropic cells. Inter-
estingly, it appears that for the multi-turn labyrinth the distribution of anisotropies at low
energies has no distinctive bunching, as observed in the single-turn labyrinth. This means
that in important cells, there is an even distribution of very anisotropic, slightly anisotropic,
and isotropic cells.

While the violin plots of Figure 4.19 are useful in seeing the overall distribution of metrics
for the whole problem, it is also possible to plot them similarly to the flux maps shown
previously. Figure 4.20 shows the M4 distribution for the single and multiple turn labyrinth
problems. Recall that this metric is the ratio of the contributon anisotropy to the standard
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(b) Ω-flux flux map for lowest energy group, multiple turn labyrinth.

Figure 4.18: Flux map slice of multiple turn turn labyrinth. Flux maps have scales nor-
malized to maximum and minimum values for each slice; between plots the scales are not
consistent. These plots show the lowest energy group, group 026, for each cell in the problem
midplane.
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(a) M3 distribution for single turn labyrinth

adjoint anisotropy. Cells that have blue coloring are those where the contributon max to
average flux is lower than the adjoint. As a result, the forward and adjoint fluxes to not
synergitically combine in angle. This generally means this is a region of lower importance.
Values of unity mean that the contributon anisotropy is comparable to the adjoint anisotropy.
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(b) M3 distribution for multi-turn labyrinth

Figure 4.19: Violin plots of M3 distribution using values above the mean contributon flux for
labyrinth problems. Low energy group numbers correspond to high energies or fast particles,
and are marked in red.

(a) M4 lowest energy group, single turn labyrinth.

In figure 4.20a, it is clear that the concrete body of the maze is a region where the anisotropies
are similar.

Figure 4.20a shows that the region where the anisotropy of the contributon flux differs
the most from the adjoint flux is in the air region near the detector, and also in the air
regions of the maze. Specifically, the anisotropy of the contributon flux is greater in the
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(b) M4 for lowest energy group, multiple turn labyrinth

Figure 4.20: M4 distributions at problem midplane for labyrinth problems.

air region between the detector and the maze, and the anisotropy of the contributon flux
is lower in regions behind the detector. Conceptually, we expect this anisotropy behavior
in the region just past the detector, as the contributon flux will combine positively if the
forward and adjoint fluxes are travelling in opposite directions, and will combine negatively
if they are travelling in the same direction. As a result, the anisotropy of the contributon
flux behind the detector will be minimized when compared to the original adjoint angular
flux.

Figure 4.20b shows, like Figure 4.20a, the M4 distribution at the problem midplane for
the lowest energy group for the multiple turn labyrinth. In this problem we similarly see
the strongest anisotropy in the flux near the NaI detector. However, the range of values
is different. The concrete region of the maze still shows similar anisotropies between the
contributon and adjoint angular fluxes. The maze edge next to the NaI detector also has
some fairly anisotropic regions, but overall the anisotropies are less different in this problem
than in the single turn labyrinth. As a result, CADIS-Ω does not have as much angular
information to capture, and its importance map is less effective. This was also illustrated in
the flux map comparison of Figure 4.18.

Both figures have interesting secondary features in the anisotropy in the air regions. These
regions look similar to ray effects, but are not always reflected in the flux maps themselves.
The author is not sure how to explain these effects, but they are worth future study.

It must be noted that while the trends in these violins are interesting, we must also be
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wary of using comparing the violins directly. The filtering algorithm used to pull values out is
dependent only on the contributon flux solution for that problem, so the average contributon
flux cutoff for the single-turn labyrinth and multiple-turn labyrinth are different. Using a
raw value from the violin plot in Figure 4.19b and directly comparing it to one from Figure
4.19a may be misleading. Instead, this analysis will focus on the general behavior of the
metrics in each problem, not specific metric values.
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(a) RE improvement factor as a function of M3 statistics for single turn labyrinth
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(b) RE improvement factor as a function of M3 statistics for multi-turn labyrinth

Figure 4.21: Relative error improvement factor as a function of M3 distribution statistics.
Metric distribution statistics are calculated using values of M3 in cells with contributon flux
values above the mean. Colors of datapoints correspond to the energy group to which they
belong.

Figure 4.21 shows the improvement factors of the relative errors between CADIS-Ω and
CADIS for the labyrinth problems. The x-axes of the plots in Figures 4.21a and 4.21b use
the distribution statistics from the violins in Figures 4.19a and 4.19b, respectively. Recall
that because IRE is the ratio of the relative error between CADIS-Ω and CADIS–and we seek
a low relative error–that values of IRE below 1.0 indicate method improvement for CADIS-Ω.

Looking at the differences between Figures 4.21a and 4.21b, some interesting effects can
be observed. Recall from the relative error distribution plots for each problem (Figures 4.17
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and 4.13) that CADIS-Ω had higher relative errors in all energy bins than CADIS for the
multi-turn labyrinth, and a higher relative error in thermal energy groups in the single-turn
labyrinth. Figure 4.21a shows the isolated grouping of poorer results for low energy bins in
the single turn labyrinth. The rest of the values in this figure all show improvement in the
relative error, while the low-energy group show better performance for CADIS. There is no
distinct grouping in Figure 4.21b because all of the CADIS-Ω relative errors are higher than
CADIS, so a distinct turnover in IRE does not occur.

There does not seem to be a tight trend observable for any measurement of the M3

distribution and IRE in Figure 4.21a, but the higher values of IRE generally occur in high
mean values of M3 and higer variances of M3. Figure 4.21b also shows this trend in the
metric mean and variance subplots, with a single outlier in an intermediate energy group. It
also appears that the spread of IRE values does not change as a function of any of the metric
values.
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(a) FOM improvement factor as a function of M3 statistics for single turn labyrinth
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(b) FOM improvement factor as a function of M3 statistics for multi-turn labyrinth

Figure 4.22: Figure of Merit improvement factor as a function of M3 distribution statistics.
Metric distribution statistics are calculated using values of M3 in cells with contributon flux
values above the mean. Colors of datapoints correspond to the energy group to which they
belong.
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Figure 4.22 builds off of what we’ve already observed in Figure 4.21. In this series of
figures, IFOM is plotted rather than IRE. If CADIS-Ω has better FOM performance than
CADIS, the resulting value of IFOM will be above 1.0.

Many features from Figure 4.21 continue in Figure 4.22. The distinct grouping of low-
energy results for the single turn labyrinth are also observable in 4.22a. The intermediate
energy outlier for the multiple turn labyrinth is located at the bottom of all of the subplots
in Figure 4.22b. By adjusting our results to include timing, even less of a trend with metric
distribution measurements is seen in the improvement metric for the single turn labyrinth.
However, for the multiple turn labyrinth it does appear that as the metric mean value
increases, IFOM decreases.

4.2.4 Steel Beam

The steel beam embedded in concrete FOM and timing results are summarized in Tables
4.9 and 4.10. Figures 4.23 and 4.24 show the results obtained by the track length tally in
CADIS, CADIS-Ω and the nonbiased analog Monte Carlo.

CADIS CADIS-Ω analog
MC MChybrid MC MChybrid MC

tally avg 668 659 3e+03 2.96e+03 1.39
max RE 3.74 3.69 6.79 6.71 0.0448
min RE 1.43e+03 1.41e+03 1.33e+03 1.31e+03 –
time (mins) 414 420 2.09e+03 2.11e+03 22.3

Table 4.9: Figure of Merit comparison for steel bar embedded in concrete.

CADIS CADIS-Ω analog
time (minutes)

MCNP time total 414.45 2086.60 22.33
deterministic time advantg time 0.18 0.18 –

denovo time 5.69 25.64 –
dispose time 0.00 0.16 –
omega time 0.00 0.66 –
total 5.87 26.49 –

wall time 420.32 2113.09 22.33

Table 4.10: Detailed timing results for steel bar embedded in concrete.

Tables 4.9 and 4.10 show that this problem is very difficult for analog Monte Carlo
and that CADIS-Ω generally performs better than CADIS. In fact, CADIS-Ω has the best
performance in this problem of all of the characterization problems.
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For both CADIS and CADIS-Ω, this problem has a huge disparity in the FOMs calculated
with the maximum and minimum relative error. As a result, depending on the convergence
requirements that a user might require, the time to achieve a desired solution could vary
significantly in applications. However, both CADIS and CADIS-Ω improve on the unbiased
analog Monte Carlo’s FOM by a factor of 102 or more.

CADIS-Ω outperforms CADIS for the FOMS calculated with the tally average relative
error and the tally maxmimum relative error. This indicates that giving a limiting relative
error to which all energy bins must converge, CADIS-Ω will achieve it in 1/3rd the time
that CADIS will. Further, CADIS-Ω has a better FOM than CADIS when the deterministic
runtimes are added. As shown in the timing table, the time to run and generate the variance
reduction parameters for CADIS-Ω will always be longer than CADIS due to the addition
of the forward transport run. The addition of deterministic runtimes has the potential to
lower the FOM of CADIS-Ω more than that of CADIS, so CADIS-Ω’s achievement of a FOM
higher FOM with much longer runtimes in both Monte Carlo and ADVANTG illustrates just
how much lower the relative error it achieves is. CADIS-Ω is very well-suited to a problem
with these conditions.
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Figure 4.23: Tally results comparison between methods for steel bar embedded in concrete.

Figure 4.23 shows that CADIS and CADIS-Ω are in agreement for the tally results in
all energy bins. The nonbiased Monte Carlo calculation differs from both of the hybrid
methods. This supports what was observed in the nonbiased analog FOM values of Table
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Figure 4.24: Tally relative error comparison between methods for steel bar embedded in
concrete.

4.9. Figure 4.24 shows that CADIS-Ω achieves a consistently lower relative error than CADIS
for all energy bins. For most energy bins, CADIS-Ω’s relative errors are shifted a consistent
fraction below CADIS’. In the energy regions between 10−4 and 10−1 MeV, this is not the
case. For these energy regions CADIS’ relative errors spike while CADIS-Ω’s do not.

From the FOM results presented in Table 4.9 and the tally results and error in Figures
4.23 and 4.24, we can conclude that CADIS-Ω’s source biasing parameters consistently move
more particles in all tally energy bins more effectively than CADIS. The importance map
generated by CADIS-Ω better reflects the problem physics and more efficiently transports
particles to the desired tally location.

4.2.4.1 Air Channel Variant

The characterization problems have been designed to induce anisotropy in the flux. Most
of these problems do so, in some part, by using air to induce particle streaming. The
steel beam in concrete problem requires that particles interact with a high density material
(either steel or concrete) before reaching the detector to induce a response. These next
two variant problems explore whether the material choice of steel strongly affects the Ω-
method’s ability to generate variance reduction parameters. This first variant keeps the
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geometric configuration of the steel beam problem the same, but the steel is replaced with
air. If the Ω-methods are more sensitive to air, then this change in the materials composition
should affect the results.

cadis cadisangle analog
MC MC adjusted MC MC adjusted MC

tally avg 432 390 396 364 5.63
max RE 1.17 1.05 0.247 0.227 0.0467
min RE 273 247 296 272 –
time (mins) 47.3 52.3 247 268 21.4

Table 4.11: Figure of Merit comparison for air variant of the steel beam problem geometry.
In this variant problem, the steel bar volume region is replaced with air to exacerbate the
suggested splitting issues encountered in other hybrid problems.

cadis cadisangle analog
time (minutes) time (minutes) time (minutes)

MCNP time total 47.29 246.83 21.42
deterministic time advantg time 0.16 0.15 –

denovo time 4.90 20.50 –
dispose time 0.00 0.15 –
omega time 0.00 0.65 –
total 5.05 21.30 –

wall time 52.34 268.13 21.42

Table 4.12: Detailed timing results for steel beam geometry air variant.

Tables 4.11 and 4.12 summarize the FOM and timing results for the air variant of the steel
beam problem. Comparing the FOMs for this variant and for the steel variant (Table 4.9), it
is clear that CADIS-Ω performs more poorly than CADIS with air. Interestingly, CADIS-Ω’s
minimum relative error FOM is better than CADIS’, which is opposite to the results for the
standard steel problem. For the maximum relative error, CADIS-Ω’s FOM is 1/5th that of
CADIS’. However, for this problem CADIS-Ω’s runtime is almost five times that of CADIS.
Considering this time difference, it appears that CADIS-Ω requires far more sampling with
its importance map than CADIS. These sampling requirements also exist with the original
steel problem, but the importance map reduces the tally variance enough to offset the time
addition. This is not the case for the air variant. From this, we can conclude that the
addition of air into this problem geometry reduces the sampling interaction points enough to
negatively affect the Ω-method. Further, it lowers the FOMs achieved by both CADIS and
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CADIS-Ω substantially that their improvement over the nonbiased analog reduces almost an
order of magnitude.

The runtimes in Table 4.12 are also worth comparing with the original steel variant.
In particular, the deterministic runtime in both of the promblems is on the same order of
magnitude. However, the Monte Carlo runtime is far longer in the original steel version.
The runtimes in the air variant are generally much shorter for CADIS and CADIS-Ω, but
comparable for the nonbiased analog. In this problem, the fraction of time spent in the
deterministic solve is much higher than in the steel version.

4.2.4.2 Concrete Channel Variant

In addition to the air variant of the steel beam geometry, we can see if having non-preferential
flowpaths might affect the Ω-method’s performance. Recall that the Ω-methods have been
designed to incorporate angular information into the importance map. If no preferential
flowpaths exist through the problem geometry, then the Ω-importance map may have less
of an impact on improving the tally convergence. However, because the entire shield is
composed of concrete, then the distance to smapling location should still be quite small as
with the original steel version of the problem. As a result, there should be some positive
effects on the Ω-methods due to sampling interaction frequency. Tables 4.13 and 4.14 show
the FOM and timing results for this material variant of the steel beam geometry.

cadis cadisangle analog
MC MC adjusted MC MC adjusted MC

tally avg 2.6e+03 2.55e+03 3.16e+03 3.13e+03 1.54
max RE 14.5 14.2 9.48 9.39 0.0457
min RE 1.54e+03 1.51e+03 1.4e+03 1.39e+03 –
time (mins) 385 393 1.98e+03 2e+03 21.9

Table 4.13: Figure of Merit comparison for concrete variant of steel bar geometry. In this
variant problem, the steel bar volume region is replaced with concrete to eliminate the
preferential particle travel through the beam region.

Tables 4.13 and 4.14 show the results of the concrete variant of the steel beam problem.
As with the original steel and air versions described previously, the runtimes for CADIS-Ω
are quite long when compared to CADIS. In each variant, the runtimes are about five times
longer than those observed for CADIS. Similarly to the steel variant, in this version CADIS-
Ω achieves a superior FOM for the tally average FOM. However, CADIS-Ω’s FOMS for the
maximum and minimum relative error FOMs are both lower than CADIS’. Both CADIS and
CADIS-Ω far outperform the nonbiased analog Monte Carlo.

To compare the performance of each of the variants of this problem, let us first compare
the differences in the flux distributions for the Ω and CADIS versions of the problem. Figure
4.25 shows the adjoint and Ω fluxes for the steel beam in concrete version of this geometry.
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cadis cadisangle analog
time (minutes) time (minutes) time (minutes)

MCNP time total 385.11 1978.46 21.88
deterministic time advantg time 0.23 0.15 –

denovo time 7.42 19.58 –
dispose time 0.00 0.09 –
omega time 0.00 0.56 –
total 7.65 20.29 –

wall time 392.76 1998.75 21.88

Table 4.14: Detailed timing results for concrete variant of steel bar.

It is clear from both of these two figures that there is a preferential flowpath through the
steel beam for both the standard adjoint and for the Ω-fluxes.

(a) Adjoint flux distribution, lowest energy group

As with the multiple-turn labyrinth, the flux maps are very similar between the adjoint
and Ω-flux plots in this figure. Recall that M2 is the ratio of the scalar Ω-flux to the scalar
adjoint flux in each cell. Figure 4.26 shows the M2 distributions for each of the material
variants of the steel beam problem. Figure 4.26a contains the distribution of M2 for the
original steel variant, Figure 4.26b is of the variant with air replacing the steel, and Figure
4.26c. Note that Figure 4.26b has the colormap scaled to a log scale, while the other two
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(b) Ω-flux distribution, lowest energy group

Figure 4.25: Flux maps for steel beam in concrete. Fluxes shown are at problem midplane,
and energy group 026. The colormap for each has been scaled to the data in the plane.

figures do not. This is because the range is much larger in this figure, and a linear scale
obscures the data.

By comparing the ratio of the Ω- to adjoint-fluxes in each of the figures in 4.26, the
effect that material choice has on changing the Ω-flux becomes more apparent. First, all
three plots show a constant value of M2 within the concrete shield itself. As a result, we
can conclude that materials in which the particles have a small mean free path of travel,
the flux isotropy is fairly constant and does not differ between the Ω- and adjoint fluxes.
Next, having a preferential flowpath through the shield does change the resultant Ω-flux.
Depending on material, the flux may be very different (as with the air in Figure 4.26b) or
fairly similar (as with the flux ratio in the steel in Figure 4.26a). All three problems show
a very different distribution of fluxes near the adjoint source. This is the case with both of
the labyrinth variants previously discussed.

The subfigures of Figure 4.27 complement those presented in Figure 4.26. As with Figure
4.26, the subfigures here are normalized by the adjoint problem. Rather than comparing the
adjoint scalar fluxes, here the contributon anisotropy in each cell is compared to the adjoint.
Similar features can be observed between the subfigures in 4.27 and their counterparts in
4.26. For exmaple, the anisotropies in the cells in the shield are the same as the adjoint. As
a result, we see little- to no- difference between the Ω-method aniosotropy or the standard
adjoint anisotropy. Figure 4.27b shows some interesting streaming effects on the anisotropy
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(a) M2 distribution for steel beam in concrete.

(b) M2 distribution for steel beam in concrete, air variant.

in the air channel within the shield. In particular, the contributon anisotropy is larger for
the majority of the air channel than the adjoint anisotropy. There is an exception to this
observation at the M4 values marked with dark blue in the air channel.
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(c) M2 distribution for steel beam in concrete, concrete variant.

Figure 4.26: M2 distribution plots for material variants of steel beam in concrete. Distribu-
tion shown is for lowest energy group. Scales adjusted to match dataset of each figure.

(a) M4 distribution for steel beam in concrete.
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(b) M4 distribution for steel beam in concrete, air variant.

(c) M4 distribution for steel beam in concrete, concrete variant.

Figure 4.27: M4 distribution plots for material variants of steel beam in concrete. Distribu-
tion shown is for lowest energy group. Scales adjusted to match dataset of each figure.
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All three subfigures in 4.27 show that there exist differences in the anisotropy near the
adjoint source and near the forward source in all material variants of this problem. Unlike
the subfigures of 4.26, the anisotropies extend all the way to the problem boundaries in the
air regions of the problem. However, the anisotropy in the area of each problem near the
detector is generally larger than the anisotropy in the area neaer the forward source.

With an intuition of how the Ω and adjoint-scalar fluxes differ both on the cell-scale, and
how their anisotropies differ on the cell scale, we can now look at the effectiveness of each at
predicting the Ω-method’s success (or lack thereof). Recall that Figures 4.26 and 4.27 show
the anisotropy distributions for the lowest energy group. On the next several figures, the
data illustrated by these figures will correspond with the darkest blue violin and the darkest
blue scatterplot data point, respectively. The next several figures attempt to collapse the
substantial quantity of data available in Figures 4.26 and 4.27 to values with which we can
correlate with Ω- relative error or FOM improvement.
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(a) M4 distribution for steel beam geometry
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(b) M4 distribution for air beam geometry
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(c) M4 distribution for concrete beam geometry

Figure 4.28: Distribution plots of M4 for the steel beam problem geometry material variants.
Distributions have been filtered from cells that are in bins above the contributon average
flux in each problem. Coloring corresponds to energy group, red indicates a higher energy
group and blue a lower energy group.

The beam problem material variants provide a very interesting opportunity to see the
effect of material properties on IRE and on the anisotropy metric distributions. Based on
observations, the distributions for M4 will be shown for these problem variants in 4.28 and
4.29. Figure 4.28a shows the M4 distribution for each energy group as a violin plot for the
original steel version of the problem. Figures 4.28b and 4.28c show the air and concrete
variants of the problem, respectively. Note the similarity between the metric distributions
for the steel and concrete variants of the problem (Figs. 4.28a and 4.28c). The metric
distributions have similar ranges, similar distributions, and similar mean values. The only
energy groups where there are noticeable differences are in the highest energy groups, where
the local minimum values differ, and in energy group three, where the distribution between
the two problems differs.

Compare what was observed in the concrete and steel variations of the problem to Figure
4.28b, which contains the M4 distributions for air. The range in values for each of these
violins is much larger than either 4.28a or 4.28c. Energy group 11 does not bottom out as it
does in the previous two problems. The fastest energy group is strongly peaked upwards, as
are many low energy groups. While the distribution of each of the metrics for this problem
are much broader, the main body of the distributions are centered around lower values than
either 4.28a and 4.28c.

The differences in the violin plots are purely due to differences in the sampling physics of
the problem. Despite different materials in the concrete and steel variants of the problem,
4.28c and 4.28a have similar violin distributions. This tells us that while the overall energy
spectrum of the problem may be different, the distribution of anisotropy within the problem
may be more dependent on how likely particles are to collide. That is, because both steel
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and concrete have higher interaction probabilities than air, their anisotropy distributions
will be closer to each other than air.

Because the problem geometries and mesh sizes are identical between each of these prob-
lems, it is likely that the selection of values is at similar locations in each of the problems.
However, because the filter matrix described in Section 4.1.3 is based on the contributon
flux, which is problem specific, these will still differ between problems. Further, the number
of cells selected from each energy group will differ between problems.
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(a) IRE for M4 for steel beam geometry
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(b) IRE for M4 for air beam geometry

Based on the violin plots in 4.28, it was observed that the M4 distribution was far
different in the air variant of this problem geometry than the steel or concrete variants. This
is also observable in Figure 4.29, which plots the relative error improvement metric, IRE
with different metric distribution values. Recall that a low IRE means that the Ω method
achieved a superior relative error to standard CADIS.

Figures 4.29a through 4.29c shows the relative error improvement factors for each of the
steel beam material variants described in 4.28. For both the steel and concrete problems,
CADIS-Ω has favorable values for IRE in most energy bins. In Figures 4.29a and 4.29c there
appears to be a trend in IRE with both the metric variance and the metric skew–the ratio
of the mean to the median values–which indicates that the metric distribution rather than
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(c) IRE for M4 for concrete beam geometry

Figure 4.29: Scatterplots of values describing M4 distribution against IRE for steel beam
problem geometry material variants. As with the distributions in 4.28, M4 is based on
values filtered out in cells located above the contributon flux average value. The values
on the x-axes of the figures are evaluated based on the subset of M4 values. Coloring of
datapoints correspond to the energy groups.

the metric average are more likely to be related to the improvement in the relative error for
these problems. This trend is not observable for the air variant in Figure 4.29b. In fact, the
metric mean and median values are better indicators for IRE than the distribution values.

Looking at the distributions of IRE it is clear that despite the similar metric distribution
values, the concrete and steel variants of this problem do have different performances. Dis-
regarding energy group 11, which is an outlier in all three problem figures, the two problems
have similar ranges of IRE. However, the highest energy groups have the lowest IRE for
the concrete problem, while the lowest values in the steel problem occur in in intermediate
energy groups.

4.2.5 U-Shaped Corridor

The U-shaped air corridor embedded in concrete FOM and timing results are summarized
in Tables 4.15 and 4.16. Figures 4.30 and 4.31 show the results obtained by the track length
tally in CADIS, CADIS-Ω and the nonbiased analog Monte Carlo.

Much like the single- and multiple-turn labyrinths, the U-shaped air corridor has a path-
way of preferential movement for particles in a concrete shield. In this problem, the particles
travel down the legs of the u-bend to a detector on the other side of the corridor. The
particles should have preferential flowpaths through the air ducts, but it is possible for low
energy particles to traverse the concrete barrier between the source and detector. The high
energy particles tallied in the detector are more likely to have traveled through the air ducts
and the low energy particles may be supplied from the shield or from scattering down the
air duct.

The FOM table for the u-shaped corridor shows that this is a fairly difficult problem
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CADIS CADIS-Ω analog
MC MChybrid MC MChybrid MC

tally avg 64.1 51.9 60.2 38.3 0.378
max RE 0.0183 0.0148 0.0144 0.00913 0.0644
min RE 14.9 12 13.4 8.54 –
time (mins) 54.6 67.5 188 296 15.5

Table 4.15: Figure of Merit comparison between methods for U-shaped air corridor in con-
crete.

CADIS CADIS-Ω analog
time (minutes)

MCNP time total 54.61 187.92 15.54
deterministic time advantg time 0.19 0.21 –

denovo time 12.68 105.90 –
dispose time 0.01 0.35 –
omega time 0.00 1.49 –
total 12.87 107.60 –

wall time 67.48 295.52 15.54

Table 4.16: Detailed timing results for U-shaped air corridor in concrete.

for CADIS, CADIS-Ω, and the analog. For the tally average FOM, CADIS and CADIS-Ω
achieve a FOM two orders of magnitude higher than the nonbiased analog. Both methods
have comparable FOMs. In fact, CADIS and CADIS-Ω are in relative agreement for all FOMs
calculated with the Monte Carlo runtime. Interestingly, the nonbiased analog Monte Carlo
has a higher maximum relative error FOM than either method. However, this analog tally
for this problem has many nontallied bins (as can be gathered from the major discrepancy
in results in Figures 4.30 and 4.31). For the few bins that were tallied, the analog has a high
FOM.

The tally results for the u-shaped corridor in Figure 4.30 show general agreement between
CADIS and CADIS-Ω. The nonbiased analog has no agreement with either method. Com-
paring their relative errors in Figure 4.31, we can gather that this is a difficult problem for
both methods. At high energies both CADIS and CADIS-Ω have very high relative errors,
indicating untrustworthy results. To get the relative error in these regions for CADIS-Ω
to below 0.10–a fairly standard threshold for Monte Carlo–it would have to run nearly 40x
longer, or 900 hours. However, CADIS-Ω achieves a uniformly lower relative error than
CADIS for all energy bins. Because the time to run CADIS-Ω is so much longer, the FOM
is impacted and appears worse than CADIS. Therefore, should CADIS-Ω use the same run-
time as CADIS, CADIS will achieve superior relative errors. Conversely, if CADIS-Ω uses
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Figure 4.30: Tally results comparison between methods for U-shaped air corridor in concrete.

the same particle count as CADIS, CADIS-Ω will achieve superior relative errors.
While the u-shaped bend problem does not have FOMs for CADIS-Ω that significantly

improve upon CADIS’, CADIS-Ω still achieved lower relative errors than CADIS. Figure
4.32 shows the flux distributions in the U-bend located at the midplane containing the NaI
detector. Figure 4.32a shows the adjoint scalar flux, Figure 4.32b shows the angle-integrated
contributon scalar flux, and Figure 4.32c shows the Ω-flux, all at the same problem midplane.

As with the single-turn labyrinth, the adjoint scalar flux in Figure 4.32a shows substantial
ray effects in the air regions near the adjoint source. As expected, the ray effects are mitigated
once the particles interact with concrete. The difference in flux value between the orange
region and the yellow regions of the plot is on the order of two- to three- orders of magnitude.
The two ray effect fingers are separated by a distance of 10-20cm, meaning that a particle
traversing air in this region may experience fairly large differences in importance between
scattering events.

In this problem the forward source is offset in the z-plane from the detector by 100cm.
The effects of this on the flux are visualized well by the contributon flux in Figure 4.32b. In
the left-leg of the u-bend, the contributon flux decreases near the bottom. This is because
particles are more biased in a deeper z-plane, towards the forward source. It is also clear
from this figure that in the high energy region, the contributon flux streams particles through
the concrete shield.
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Figure 4.31: Tally relative error comparison between methods for U-shaped air corridor in
concrete.

(a) Adjoint flux distribution, highest energy group
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(b) Contributon flux distribution, highest energy group

(c) Ω flux distribution, highest energy group

Figure 4.32: Flux distributions at problem midplane for U-shaped corridor. Distributions
shown are for the highest energy group. In this problem the forward source and detector
region are located in different z-plane locations.

The Ω-flux shown in Figure 4.32c does not attempt to force particles through the shield
like the contributon flux, nor does it have as substantial of ray effects as the adjoint scalar
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flux distribution. However, the ray effects in this variant are not completely mitigated. There
appears to be a cone of particles extending into the u-bend that are of greater importance
than the other regions near the detector. This is a clear effect of the forward flux distribution.
However, the region just to the right of the detector location is of possible consequence.
Between the detector and directly to the right, the flux decreases in magnitude more than
two orders of magnitude. It is possible that the large gradient in importnace could be
adversely affecting the time achieved by the Ω methods for this problem.

(a) M3 distribution, visualized in plane containing detector

Figures 4.33a and 4.33b show the anisotropy metrics for the u-shaped bend. Figure 4.33a
shows the M3 distribution, which as one may recall is the ratio of the contributon maximum
angular flux to the contributon average angular flux in the cell. M4, which is visualized in
Figure 4.33b, divides M3 by the ratio of the maximum to average adjoint angular fluxes.

Comparing these two figures we can identify the effect of this normalization on the
anisotropy metrics. Beginning with the M3 distribution plot in Figure 4.33a, it is clear
that we still observe the secondary ray effects in the flux anisotropies that were observed
in the labyrinth problems. On the right side of the u-bend, we observe ray effects in the
aniostropy that are likely from the adjoint flux distribution. On the left side of the bend
we observe oblong circular distributions of anisotropy. These are more likely to be from
particles emanating forward source distribution. The contributon flux anisotropies are much
stronger in the air channels than in the concrete shield, as we would expect. In the shield
immediately bounding the air, we observe a fairly isotropic flux distribution, but as particles
reach closer to the edges the anisotropy increases slightly.

The M4 distributions shown in 4.33b show how certain features of the anisotropy are
removed when using the control adjoint angular flux. In particular, the shield region becomes
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(b) M4 distribution, visualized in plane containing detector

Figure 4.33: Anisotropy metrics plotted at problem midplane (z = 55) for U-shaped corridor.
Energy group shown is for lowest energy.

completely normalized, meaning that the isotropy in the contributon flux matches that of the
adjoint flux. The air regions are where real and substantial differences occur. In particular,
we see peaks in the anisotropy where the forward and adjoint fluxes meet. At the top of the
bend, the adjoint and forward fluxes have scattered relatively few times and thus generate a
high aniosotropy in the contributon flux.

These anisotropy plots illustrate how in certain regions the flux anisotropy may be very
high. Further, they show regions where the fluxes strongly interact with one another. In ad-
dition to helping to quantify the effectiveness of the method, they reveal interesting features
of the solution that may not be obvious using standard flux figures.

4.2.6 Shielding with Rebar

The problem with rebar embedded both in the x- and y- directions in concrete has results
summarized in Tables 4.17 and 4.18. Figures 4.34a and 4.34b show the results obtained by
the track length tally in CADIS, CADIS-Ω and the nonbiased analog Monte Carlo.

The FOM results for the rebar-embedded concrete show that this is a very poor problem
for CADIS-Ω, in general. CADIS-Ω has lower FOMs than CADIS in all measures. CADIS-
Ω spends fractionally over five–both deterministically and in Monte Carlo–the transport
time that CADIS does. Further, CADIS-Ω has poorer FOMs in both the tally average and
maximum relative error than the nonbiased analog. This is due to CADIS-Ω requiring nearly
30x longer to run Monte Carlo than the nonbiased analog.



CHAPTER 4. CHARACTERIZATION PROBLEMS AND RESULTS 119

CADIS CADIS-Ω analog
MC MChybrid MC MChybrid MC

tally avg 1.15 1.09 0.0136 0.0127 0.948
max RE 0.0345 0.0327 0.00117 0.00109 0.0186
min RE 235 223 199 186 –
time (mins) 328 346 1.55e+03 1.66e+03 53.8

Table 4.17: Figure of Merit comparison between methods for rebar-embedded concrete.

CADIS CADIS-Ω analog
time (minutes)

MCNP time total 327.81 1550.54 53.82
deterministic time advantg time 0.28 0.29 –

denovo time 17.70 105.09 –
dispose time 0.03 0.41 –
omega time 0.00 2.05 –
total 17.98 107.43 –

wall time 345.79 1657.97 53.82

Table 4.18: Detailed timing results for rebar-embedded concrete.
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(a) Tally results comparison.
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(b) Tally relative error comparison.

Figure 4.34: Tally result and error for rebar-embedded concrete, monodirectional Monte
Carlo source

Figure 4.34a shows that the tally results for the rebar-embedded concrete do not gen-
erally agree between any method. CADIS and CADIS-Ω have better agreement with each
other than with the nonbiased analog, but at high energies their results differ significantly.
However, in comparing their relative errors in Figure 4.34b, the large discrepancy in their
results is explained by the very high relative errors in this region. As with the U-shaped
air corridor, neither method achieves satisfactory relative errors below 0.10 in high energy
bins. However, both methods achieve comparatively good relative error results in energy
bins below 10−1 MeV.

It is interesting that this problem appears to perform far more poorly than the steel beam
in concrete. At this point, we must ask ourselves why a similar, but slightly more complex
problem would have such substantively different results in the FOMs. This problem is
undoubtedly difficult for both CADIS and FW-CADIS, but why does CADIS-Ω have such a
poor performance in high energy bins which are usually more anisotropic than lower energy
bins.

Section 4.1.2 described that flux anisotropy can be induced by the problem materials,
geometry, or the source definition. Three of the characterization problem have monodirec-
tional sources: the steel beam in concrete, the rebar-embedded concrete, and the nuclear
medicine therapy room. At this point in the work it was discovered that ADVANTG does
not support monodirectional sources, though it has in the past. As a result, the importance
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maps generated by ADVANTG/Denovo automatically use an isotropic source distribution.
However, the Monte Carlo input is not edited to reflect an isotropic source. As a result, the
importance map does not match the physics in the problem.

This difference in the source definition did not affect the steel bar in concrete problem
(Section 4.2.4) because the source comprises the entire wall at x = 0. However, both the
rebar and the medical therapy room will have importance maps that do not match the
physics of the defined Monte Carlo input. The results presented in Tables 4.17 and 4.18,
as well as Figures 4.34a and 4.34b reflect a Monte Carlo simulation with a monodirectional
source and a deterministic solver providing an importance map with an isotropic source.
This, though unexpected, issue provides an opportunity for us to investigate the Ω-method’s
sensitivity to incorrect importance maps.

Tables 4.19 and 4.20 show the FOM and timing results for a Monte Carlo simulation
with an isotropic source defined. Note that the deterministic times in Table 4.20 match
those in Table 4.18. This is because the lack of support for monodirectional sources results
in a deterministic solution that is agnostic to the defined Monte Carlo source. Figures 4.35a
and 4.35b show the tally results and relative error for the case where the Monte Carlo and
deterministic sources are consistent.

cadis cadisangle analog
MC MC adjusted MC MC adjusted MC

tally avg 80.5 45.6 260 132 0.257
max RE 1.52 0.862 1.31 0.662 0.109
min RE 221 125 214 109 –
time (mins) 23.5 41.4 111 218 9.15

Table 4.19: Figure of Merit comparison between methods for rebar-embedded concrete,
isotropic Monte Carlo source.

The results in Table 4.19 are quite different than those in Table 4.17. The time for both
CADIS and CADIS-Ω is reduced by more than an order of mangitude. In the original run
of this problem, CADIS-Ω took 1,500 minutes to converge. Here that time is reduced to 111
minutes. Further, the tally average and tally maximum RE FOMs change between the tables
by several orders of magnitude. This means that in addition to the shortened time reducing
the FOMs, the relative errors also improved between the monodirectional and isotropic point
source variants.

The tally results between Figs. 4.35a and 4.34a, show that having a consistently defined
source between deterministic and Monte Carlo transport results in a closer tally result be-
tween CADIS and CADIS-Ω. This is also confirmed in Figs. 4.35b and 4.34b. In the origianl
version of ths problem CADIS-Ω’s relative errors at energy bins > 10−1 were more than twice
that of the REs achieved by CADIS. Interestingly, we see the opposite occur in the isotropic
source definition. In figure 4.35b, CADIS has some energy bins with relative errors almost
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cadis cadisangle analog
time (minutes) time (minutes) time (minutes)

MCNP time total 23.47 110.67 9.15
deterministic time advantg time 0.28 0.29 –

denovo time 17.70 105.09 –
dispose time 0.03 0.41 –
omega time 0.00 2.05 –
total 17.98 107.43 –

wall time 41.45 218.10 9.15

Table 4.20: Detailed timing results for rebar-embedded concrete, isotropic Monte Carlo
source.
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(a) Tally results comparison.

9x thos of CADIS-Ω in the same bin. However, it is worth noting that the scales between
these two problems is very different. The highest RE achieved by CADIS in Figure 4.35b is
lower than either CADIS or CADIS-Ω’s RE in the monodirectional problem.

The plots in Figure 4.36 show the highest energy flux for the foward problem in Fig.
4.36a and the lowest energy Ω-flux distribution for the Ω-method in Figure 4.36b. Figure
4.36a clearly shows that the plate source on the left side of the problem is isotropically
emitting particles. The Ω-flux in Figure 4.36b shows the preferential flowpaths for particles
through the steel at low energies. Recall that the deterministic flux distributions will not
change between the isotropic and monodirectional source definitions in Monte Carlo, so these
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(b) Tally relative error comparison.

Figure 4.35: Tally result and error for rebar-embedded concrete, isotropic Monte Carlo source

(a) Forward flux distribution, highest energy group

figures and any map of the metric distributions in the problem are the same regardless of
the Monte Carlo source definition.
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(b) Ω flux distribution, lowest energy group

Figure 4.36: Forward and Ω-flux distributions, rebar embedded in concrete. Slice is located
at y = 100 centimeters

(a) M2 distribution, lowest energy group.
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(b) M3 distribution, lowest energy group.

(c) M4 distribution, lowest energy group.

Figure 4.37: Metric distributions for rebar-embedded concrete. Slice at y = 100 centimeters.
Lowest energy group distributions shown.
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The subfigures of 4.37 show the M2, M3, and M4 distributions for the lowest energy group
for the rebar problem. Recall that the M2 distribution directly compares the Ω and adjoint
scalar fluxes. Figure 4.37a shows that the biggest deviations of the Ω-flux from the adjoint
are near the adjoint source. This was similarly observed in the steel beam problem variants.
The regions of concrete are the same between CADIS and CADIS-Ω, but the rebar support
structure shows that the Ω flux has a slightly higher importance for these regions. Glancing
back towards the adjoint source region, the flux importances can be seen separating into
fingers that line up with the concrete blocks in the problem.

The M3 distribution of 4.37b shows the anisotropy of the contributon flux for this problem,
and the M4 distribution in Figure 4.37c shows the result of normalizing this anisotropy by
the adjoint anisotropy. In the concrete blocks of Figure 4.37b some interesting anisotropy
distributions occur closer to the forward source. As with Figure 4.37a, we can see the
anisotropies separate into fingers that line up with the concrete blocks. On the adjoint source
side of the shield, the anisotropies are the highest right next to the concrete blocks. On the
forward source side of the shield, the areas next to the blocks are the least aniosotropic.
When the metric is normalized by the adjoint in Figure 4.37c, some of the anisotropy effects
are mitigated, meaning that the adjoint angular flux is the driving force behind the features
that we observed in Figure 4.37b. However, on the forward source side of the shield there
are strong anisotropies that line up with each of the metal rebar strucutres.
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Metric Three Distribution, by Energy Group, Values Above the Mean Contributon Flux

(a) M3 distributions rebar embedded in concrete, filtered above the mean contributon flux.

While the metric distributions and the flux maps do not differ between the Monte Carlo
source types, the scatterplots of IRE and IFOM will. Figure 4.38a shows a violin plot of
the M3 distributions for this problem. Figure 4.38b shows IRE for the problem with a
monodirectional Monte Carlo source trended against several metric values for M3 values
using the mean contributon flux filtering algorithm. Figure 4.38c shows these trends for
the problem with an isotropic Monte Carlo source using the mean contributon flux filtering
algorithm.

After inspecting the metric distributions against IRE and IFOM , no distinct trends were
observable with any metric and either improvement factor. Because M3 had the best trends,
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(b) IRE for M3 for rebar embedded in concrete, monodirectional Monte Carlo source.
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(c) IRE for M3 for rebar embedded in concrete, isotropic Monte Carlo source.

Figure 4.38: M3 distribution and IRE scatterplot for rebar-embedded in concrete. Values of
M3 have been filtered to be from cells that are above the contributon mean value.

it is included in the plots of Figure 4.38.
Figure 4.38a shows that low energy cells have a large spread but no centering value.

There exist some very anisotropic cells at low energy groups, but there exist also exist some
very isotropic cells. Conversely, in high energy groups the metric distribution has a very
clumped distribution of values where the contributon max angular flux is higher than the
average contributon angular flux in the cell.

Using values that can be computed from the distributions shown in Figure 4.38a, the
relative error improvement between CADIS-Ω and CADIS can be plotted as shown in Figs.
4.38b and 4.38c. The x-values between each of these figures will be the same, but the
y-ordinate values will differ as a result of their differing Monte Carlo source distributions.

In general Figure 4.38b shows there exist many energy bins where CADIS-Ω achieves
a poorer relative error than CADIS. The bins where the comparative error is the worst is
in intermediate energy regions. At low energy regions the relative errors are comparable,
but as shown in the timing table, the FOM will be much lower for CADIS-Ω. There does
appear to be a slight trend in IRE with the ratio of the metric mean to the metric median
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and with the metric variance. As with the steel beam problem, this shows that the metric
distribution is a better predictor of the improvement in the relative error than the metric
average or median value. However, these trends are not strong, and it would be difficult to
predict the performance of a similar problem based on metric distributions. Comparing the
results of Figure 4.38c to Figure 4.38b, some of these observations change with the isotropic
source definition. First, CADIS-Ω performs better than CADIS uniformly in all energy bins.
Next, there exists no trend in the metric distribution and IRE. We cannot conclude that any
version of the M3 distribution can predict whether the Ω method will improve convergence
for this problem.

It is possible that the filter matrix is not fine enough for this particular problem to
pull out metric values of high importance, but even values filtered out above the mean
contributon flux did not have strong correlations. However, with the cutoffs appearing in
the distributions of 4.38a, choosing too high of a filter value may also remove much of the
metric distribution.

Both CADIS and CADIS-Ω improve in the relative errors that they achieve as a resulf
of having a source distribution that matches between the Monte Carlo and deterministic
runs. As a result, the comparison between isotropic and monodirectional sources in this
problem shows that having an importance map that does not match the problem will slow
down convergence. Further, we can conclude that CADIS-Ω is more sensitive to having
an importance map that doesn’t match the Monte Carlo. This may be because the larger
gradients in importance exacerbate splitting and rouletting from an unexpected source.

4.2.7 Therapy Room

The problem with a simplified representation of a nuclear medicine therapy room has FOM
summarized in Table 4.21. Figures 4.39a and 4.39b show the results obtained by the track
length tally in CADIS, CADIS-Ω and the nonbiased analog Monte Carlo. Note that the
results for this problem had issues with reported times for the deterministic run, so the
adjusted Monte Carlo (FOMhybrid) is not reported and the timing table is not reported.

cadis cadisangle analog
MC MC adjusted MC MC adjusted MC

tally avg 5.81 5.71 106 8.34 2.81
max RE 0.463 0.455 0.822 0.0649 0.0136
min RE 37.6 37 32.9 2.6 0.793
time (mins) 44.7 45.4 39.9 506 248

Table 4.21: Tally relative error comparison between methods for simplified medical therapy
room, Monte Carlo monodirectional source.

The therapy room with a monodirectional Monte Carlo source is a problem where CADIS-
Ω performs fairly well when compared to CADIS and the nonbiased analog Monte Carlo.
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(a) Tally results comparison.
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(b) Tally relative error comparison.

Figure 4.39: Tally result and error for simplified medical therapy room, monodirectional
Monte Carlo source.
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For the Monte Carlo runtime-exclusive FOMs, CADIS-Ω achieves better FOMs than CADIS
and the nonbiased analog in both the tally average relative error and the tally maximum
relative error. This is likely due to a softening of the importance map as a result of the
concrete walls surrounding the therapy room. As a result, reflecting forward and adjoint
particles decrease the strong gradient that exists in other problems, like the exit of the single
turn labyrinth.

For this problem, CADIS-Ω achieved similar relative errors to CADIS for intermediate-
and fast- energy bins. However, for low energy bins CADIS performed poorly and CADIS-Ω
achieved satisfactory relative errors. These low energy bins are the only ones where CADIS-
Ω really substantially outperformed CADIS. In a similar problem it would be advantageous
to use CADIS-Ω as a method, but with deterministic runtime incorporated it may still
be worthwhile to run with CADIS instead. If a user desires a tally with low energy bins
exclusively, CADIS-Ω will be the advantageous method.

cadis cadisangle analog
MC MC adjusted MC MC adjusted MC

tally avg 29.8 11.4 192 72.4 52.3
max RE 0.829 0.316 3.51 1.32 0.292
min RE 387 148 423 159 10.7
time (mins) 287 753 281 747 91

Table 4.22: Tally relative error comparison between methods for simplified medical therapy
room, Monte Carlo isotropic source.

As discussed in Section 4.2.6, the monodirectional source distribution in Monte Carlo
is not actually reflected in the importance map generated by ADVANTG. As a result, the
results for the isotropic source are shown in Table 4.22 and Figure 4.40.

Comparing the results from Tables 4.22 and 4.21, the isotropic source definition does
improve the FOMS achieved by CADIS, CADIS-Ω, and the analog Monte Carlo. The min-
imum relative error FOMs see a factor of 10 improvement for both CADIS and CADIS-Ω.
The time to run the biased problems is quite a bit longer, which is likely due to the place-
ment of the source in the problem. Because the monodirectional source forced particles into
the water phantom, they were sent into a region with relatively little variation in the flux.
The Ω-method, in particular, avoids a region with very strong preferential flow. Avoiding
splitting and rouletting as a result of crossing paths with large variations in the flux would
allow the problem to run faster.

Despite the longer runtimes, CADIS and CADIS-Ω both achieve better FOMS in every
measure by changing the source definition. Again, the effects of using the wrong importance
map are reflected in longer runtimes for both problems.

Figure 4.40 shows the tally result and relative error for the isotropic source defined in
Monte Carlo. Comparing the tally results of the isotropic source in Figure 4.40a to the
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(a) Tally results comparison.
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(b) Tally relative error comparison.

Figure 4.40: Tally result and error for simplified medical therapy room, isotropic Monte
Carlo source.
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monodirectional in Figure 4.39a, we can see that the results between all three methods
agree better for the isotropic source distribution. The shapes of the relative error compare
similarly between Figs. 4.40b and 4.39b, however the relative errors achieved by CADIS and
CADIS-Ω are far smaller in the isotropic case. In both source definitions, CADIS struggles
transporting low energy particles more than intermediate- or high-energy particles. CADIS-
Ω handles these energies better, but it struggles in the lower-energy resonance regions slightly
more than CADIS. As a result, there is some tradeoff with effectiveness for each method.

(a) Forward flux distribution, highest energy group

The flux maps for the therapy room are shown in Figure 4.41. Figure 4.41a shows
the forward flux for the highest energy group. This figure has very strong ray effects that
dominate the flux behavior near the water cell and near the forward source. Over just a
few centimeters, the forward flux varies two- to three- orders of magnitude. The wall to
the bottom right of the figure shows some secondary ray effects that occur after scattering.
This is much more subtle than near the forward source, but there are three groupings of flux
direction after this scatter, which may be magnified in the Ω-flux by the adjoint.

Figures 4.41b and 4.41c show the adjoint and Ω-fluxes for the therapy room problem.
Unlike the labyrinth variants, where the Ω methods softened ray effects, there exist much
stronger ray effects in the Ω-flux map for the therapy room. This is because the ray effects are
primarily from the forward flux, which does not affect the standard adjoint flux whatsoever.
However, the integration of the forward and adjoint in the Ω calculation causes some of the
forward ray effects to be carried over into the adjusted adjoint. A compounding factor to this
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(b) Adjoint flux distribution, highest energy group

is that the adjoint particles travel in exactly the opposite direction to the forward particles
at the region where the hallway meets with the room. It was discussed previously that the
contributon flux will be magnified if forward and adjoint particles are travelling in opposite
directions. Not only is this the case in the therapy room, but they are travelling in oppoiste
directions down a ray effect. This magnifies the ray effect in the problem, so there is a tight
band of particle travel diagonally across the Ω problem.

Figure 4.42 shows the M4 distribution and the trends of IRE for different values of the M4

distribution for both the isotropic and monodirectional variants of the therapy room. These
figures do not use a filtering algorithm. This is because this particular problem was run on a
slightly earlier version of ADVANTG that did not output the angle-integrated contributon
fluxes. As a result, the values used for the filter matrix are not accessible, and filtering
cannot be used in this analysis. Future studies of this particular problem should compare
the effects of the filtering algorithms of the distributions of Figs. 4.42b and 4.42b.

Figure 4.42a shows the full violin plots by energy group for the therapy room. Here we see
that the lower energy groups have values clustered around a value slightly above 1. Violins
in intermediate to high-intermediate energy groups have a lower mean value than the low
energy violins, but their distribution tends to broaden. The broadening of the distribution
is particualrly evident for energy group violins valued ≤ 8.

Figures 4.42b and 4.42c show the effect that this distribution has on IRE for both the
monodirectional and isotropic variants of the problem. Again, non of the anisotropy metrics
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(c) Ω-flux distribution, highest energy group

Figure 4.41: Flux distributions at z = 150 centimeters for radiation therapy room.
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(a) Unfiltered M4 distributions medical therapy room.

showed a strong trend for IRE or IFOM with any distribution, so the best figure was included
here. Recall that a value below unity for these figures indicates that CADIS-Ω achieved a
lower relative error in that bin. In both figures CADIS-Ω has roughly half of its values above
unity and half below. There are some very low energy bins in which CADIS-Ω far outperforms
CADIS, but then there are intermediate energy groups that CADIS-Ω’s performance falters.
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(b) IRE for M4 for therapy room, monodirectional Monte Carlo source.
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(c) IRE for M4 for therapy room, isotropic Monte Carlo source.

Figure 4.42: M4 distribution and IRE scatterplot for medical therapy room.. Values of M4

have not been filtered with a filtering algorithm.

Neither figure shows a particular trend, but the metric skew does appear to be the subplot
most closely resembling a trend.

In comparing Figure 4.42 to 4.38, this problem does not show as significant of a change in
IRE with respect to changing source definitions. This means that the ratio of relative errors
between CADIS and CADIS-Ω remains the same, despite both achieving far lower relative
errors overall in the isotropic case. That means, for this problem, CADIS and CADIS-Ω are
both equally sensitive to a mismatch in importance map. This could be a result of the large
fraction of air in the problem, which dominates the behavior of both methods. Conversely,
the rebar problem required both CADIS and CADIS-Ω to sample frequently in the center of
the problem, so the effects of mismatching maps was more isolated from other effects.

4.3 Sensitivity to Deterministic Parameter Choice

At this point in the Ω-method characterization, it has been shown how the Ω-methods behave
in problems with differing geometries and materials. However, each of the problems presented
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in Section 4.2 was run with the same deterministic calculation parameters. While the angular
flux may have differed in these problems due to differences in the way the problems were
constructed, it did not vary due to deterministic solver choices. Some deterministic solver
choices will change the angular fluxes used to calculate the Ω-flux. Consequently, this may
affect the behavior of the Ω-methods. This section will explore the effects of deterministic
solver choices on the Ω-method’s performance.

Section 4.2 showed that the Ω-methods have a strong weakness to “thin” materials, as
CADIS and FW-CADIS do. Recall that a “thin” material is characterized by a low density,
and thus a low macroscopic cross section, or interaction probability. In a pure streaming
problem, the particle flux will decrease by a factor of r2 from the source and never interact.
In a thin material, a particle may stream several centimeters before interacting. As a result,
the importance of a particle, which is related to the adjoint- or omega-flux, may vary several
orders of magnitude over a mean free path of travel distance. At a collision, the particle
then requires several orders of magnitude of sampling events.

The Ω-method’s weakness to “thin” materials was confirmed by running the steel beam
problem with air and concrete in the geometric location of the steel beam. In the “thin”
material air version, CADIS-Ω performed poorer than CADIS. This was a strong contrast to
the same geometric configuration with a steel beam, where CADIS-Ω outperformed CADIS.
The success of CADIS-Ω in this problem also showed that the incorporation of the Ω-flux
into a problem with materials with very different moderating properties but both with high
probabilities of interaction, improves the performance of the Ω-methods beyond CADIS or
the nonbiased analog.

Due to CADIS-Ω’s superior performance to CADIS in the problem with a steel beam
in concrete, this is the problem that will be used to characterize CADIS-Ω’s sensitivity to
deterministic parameter choice. In this section, the effect of deterministic solver choices on
the performance of the Ω methods will be investigated. In particular, we are interested in
how parameters that influence the angular flux will affect the performance of the Ω-methods.
By using the same problem with differing solver options, the effect of solver options can
be isolated from the material and geometric effects. By doing so, we seek to determine
how resilient the Ω-methods may be to using low-fidelity solver options, how different the
sensitivity of the Ω-methods are to solution quality when compared to CADIS, and how
varying angular parameters may speed up or slow down the time to a desired solution. By
quantifying these effects, we can determine the best parameter selection for the Ω-methods
for this type of problem.

4.3.1 Parametric Study Description

The angle sensitivity parametric study will cover the subset of computational parameters
that are most likely to influence the Ω method’s solution. Because the Ω-flux is calculated
from an angular integration of the forward and adjoint flux, calculation parameters that are
most likely to influence the angular flux solution are the variables that will be perturbed.
The two parameters that will be studied are the quadrature order and the PN order.
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The quadrature used in a deterministic solver is used do discretize the problem in angle.
Quadrature options are split into two separate selections: the quadrature set or type, and
the quadrature order. Because the Ω-methods require rotational symmetry, only quadrature
sets that have rotational symmetry (generally these are triangular quadrature sets) can be
used with the Ω-methods. In ADVANTG/Denovo, the triangular quadrature sets are: linear-
discontinuous finite element, level-symmetric, and quadruple range. As discussed previously,
quadruple range is selected as the ADVANTG default because it has good properties and
guarantees positivity in the flux. Different quadrature sets have separate properties and are a
realm of study unto their own. Thus, we will vary only quadrature order and not quadrature
type in this sensitivity study.

Quadrature orders specify how fine of a resolution the quadrature set will be. As quadra-
ture order increases, the angular discretization becomes finer, and the size of the angular
flux matrices increases. The Ω methods use angular flux values that are written to a file
after a Denovo transport solve, which are then read into memory to compute the Ω-flux.
We expect to observe much slower deterministic recorded times in Tdet–and, by extension,
Thybrid–for high quadrature orders because of the I/O demand to read and write the angular
flux values. This I/O demand will not be as extreme for standard CADIS, as the angular flux
values are not written in that case. Recall that the ADVANTG default quadrature order is
10. The quadrature orders used for the sensitivity study aimed to choose orders surrounding
this value. This resulted in quadrature orders 5, 7, 10, 12, 15, 17, and 20 being chosen for
variations in this parameter.

The PN order determines the fidelity of the scattering expansion. The availability of PN

orders is dependent on the cross section dataset that is being used. For the 27G19N cross
section library, the PN order extends to 5. As a result, PN orders of 1, 3, and 5 are chosen
for variations in this parameter.

While the PN order does affect angular information in the problem, it will not change
the size of the angular flux matrices. As a result, deterministic runtimes between differing
PN orders may vary, but not as significantly as they will in differing quadrature orders due
to the lack of change in I/O requirements as PN order changes.

Other deterministic parameters may influence the variance reduction parameters calcu-
lated by the Ω methods. The spatial discretization, while not a primary factor influencing
the angular flux, still may affect the Ω-methods’ performance. A finer energy group struc-
ture may also influence the Ω-method solution. Finer energy groups will more effectively
reflect resonance regions in scattering and absorption. Scattering effects in certain energy
regions will have angular dependence and, thus, may have a stronger effect on the angular
flux than a coarser energy discretization. Because these particular solution effects do not
directly influence the angular flux and angular effects will be difficult to isolate, they will
not be included in the angular sensitivity parametric study.

Several factors in the deterministic calculation should not have a strong effect on the
angular flux distribution. These include the spatial solver, the convergence criteria for the
solvers, and the within group solver types. Because these factors should not influence the
angular flux any more than any other part of the solution, they will also not be included in
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this parametric study.

4.3.2 Quadrature Order

The results that will be presented in the next two subsections will be similar to those pre-
sented in Section 4.2. However, our goal is to see how changing deterministic parameter type
affects the results in the tally region. With this in mind, the presentation of the results may
be adjusted to more effectively show the effect each parameter has on influencing the Monte
Carlo transport.

Table 4.23 contains the FOM results for each of the quadrature orders run in the para-
metric study. The results are grouped by FOMs calculated with the same relative error.
The first three sections of the table pertain to different FOM values, and the last section of
the table shows timing results for the standard Monte Carlo (TMC) and the total walltime
(Thybrid) for the calculation.

In the tally average relative error subsection of Table 4.23, two strong dips in the FOM
appear in the CADIS results at SN orders 5 and 10, and a dip in the CADIS-Ω FOMs occur
at SN order 12. These dips are much larger relatively than in the maximum or minimum
relative error subsections of the table. This indicates that for these particular quadrature
orders, fewer particles contribute to the detector response across all groups. We can also see
in the CADIS-Ω results that quadrature orders 10, 15 and 17 all have a similar FOM for the
tally average relative error using the Monte Carlo runtime. However, the FOMs for the same
quadratures do not decrease more significantly when using Thybrid to calculate the FOM, as
suggested in Section 4.3.1. This suggests that the increased deterministic runtime for I/O is
offset consistently by the change in the FOM between quadrature orders for CADIS-Ω.

In this subsection of the table it is also notable that the oscillations between maximum
and minimum FOM values is much larger for CADIS-Ω than for CADIS. For low quadra-
ture orders, CADIS-Ω shows substantial improvement in the FOM, while CADIS remains
somewhat constant (this is omitting the major dips in FOM values noted in the previous
paragraph). At higher quadrature orders, however, CADIS-Ω’s performance is inverted and
decreases with increasing quadrature order. CADIS, however, remains fairly constant in
FOM for SN orders 12 and above. Both methods far outperform the nonbiased analog
Monte Carlo run.

The maximum relative error portion of the table also has several notable datapoints.
For CADIS, the dips in FOM are still visible for SN orders 5 and 10, but quadrature order
7 does not achieve the same high FOM as quadrature orders 12 and above as it does in
the tally average subsection of the table. If the maximum relative error convergence is the
limiting factor for the user, it appears that using any quadrature order above 10 is a good
choice for CADIS. CADIS-Ω, conversely, has more varied results. No observable trend exists
in the FOM with increasing quadrature order for CADIS-Ω. A dip in the FOM occurs at
quadrature order 12, as it did in the tally average subsection of the table. This dip, like
CADIS’ dips, is not as significant as the dip in the tally average FOMs. Generally, CADIS
has higher FOMs when using the maximum relative error as a success metric. In fact, the
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only quadrature order where CADIS-Ω’s FOM is larger than CADIS’ is at quadrature order
10.

CADIS CADIS-Ω analog
SN order MC MChybrid MC MChybrid MC

tally avg

SN 5 683 677 1.81e+03 1.79e+03

1.39

SN 7 2.55e+03 2.53e+03 2.46e+03 2.45e+03
SN 10 669 659 2.96e+03 2.93e+03
SN 12 2.46e+03 2.41e+03 187 183
SN 15 2.48e+03 2.42e+03 2.98e+03 2.92e+03
SN 17 2.47e+03 2.39e+03 2.96e+03 2.88e+03
SN 20 2.46e+03 2.35e+03 1.89e+03 1.81e+03

max RE

SN 5 4.89 4.85 2.86 2.84

0.0448

SN 7 7.71 7.64 4.35 4.32
SN 10 3.74 3.69 6.71 6.64
SN 12 14.3 14.1 0.764 0.748
SN 15 14.7 14.3 3.87 3.79
SN 17 14.8 14.4 7.98 7.78
SN 20 14.1 13.5 6.09 5.85

min RE

SN 5 1.14e+03 1.13e+03 1.09e+03 1.09e+03 –
SN 7 1.37e+03 1.36e+03 1.26e+03 1.25e+03 –
SN 10 1.43e+03 1.41e+03 1.32e+03 1.3e+03 –
SN 12 1.46e+03 1.43e+03 1.33e+03 1.3e+03 –
SN 15 1.47e+03 1.43e+03 1.32e+03 1.3e+03 –
SN 17 1.46e+03 1.42e+03 1.31e+03 1.28e+03 –
SN 20 1.46e+03 1.39e+03 1.31e+03 1.26e+03 –

Time (mins)

SN 5 302 305 1.13e+03 1.14e+03

22.3

SN 7 324 327 1.62e+03 1.63e+03
SN 10 414 420 2.11e+03 2.14e+03
SN 12 406 414 2.09e+03 2.14e+03
SN 15 404 413 2.1e+03 2.14e+03
SN 17 405 418 2.11e+03 2.17e+03
SN 20 406 425 2.12e+03 2.21e+03

Table 4.23: Figure of Merit results for steel beam embedded in concrete, with variations in
quadrature order. Subdivisions of the table indicate calculations of the FOM using different
relative errors. The analog case has a single value for each relative error as it is not dependent
on changes in deterministic calculation parameters.

In the minimum relative error subsection of Table 4.23 the CADIS and CADIS-Ω FOM
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behavior is much more well-behaved than it is for the preceding two subsections of the table.
There are no dips in the FOM value for either method, so the lowest relative error will
consistently get better with increasing quadrature order. A slight shift to a < 1% lower
FOM occurs for quadrature orders 17 and 20, which indicates that increasing quadrature
fidelity does not help improve the FOM past SN order 15. Similar behavior is observable for
CADIS-Ω in the minimum relative error subsection of the table. CADIS-Ω has a consistently
lower-valued FOM between 5%-10% for all quadrature orders when compared to CADIS. A
turnover occurs in the CADIS-Ω FOMs at a lower quadrature order, meaning that CADIS-Ω
does not benefit from increasing SN order as much as CADIS using this FOM as a metric.
However, beyond quadrature order 15 neither method sees a benefit in the FOM by increasing
the quadrature order.

The timing results in the last section of the table show how much longer it takes CADIS-Ω
to transport the standard Monte Carlo than CADIS. This was also noted in Section 4.2.4. In
the introduction to this section, it was predicted that the I/O demands for CADIS-Ω would
impact the MChybrid FOMs as quadrature order increases. However, because the CADIS-Ω
Monte Carlo times are already so much longer than CADIS’, this impact is not as significant
as expected. Further, the increase in deterministic runtime seems to change similarly to the
increase in Monte Carlo runtime as the importance map changes. This explains why the
FOMs were not impacted so negatively in the previous sections of the table.

Let us use an illustrative example to compare the FOMs between CADIS and CADIS-
Ω. Returning again to Table 4.23, at SN order 5 the non-MC runtime is three minutes for
CADIS, while it is around ten minutes for CADIS-Ω. At SN order 20, the CADIS non-MC
runtime is 19 minutes; the CADIS-Ω time is 100 minutes. For each of these cases, the non-
MC runtime is about 4% that of the Monte Carlo runtime. Because this fractional time is
fairly consistent between CADIS and CADIS-Ω, we do not see a strong impact on FOMhybrid

from the significantly longer non-MC runtimes in CADIS-Ω.
Table 4.23 shows that for the FOM using the tally average relative error, CADIS-Ω

outperforms CADIS for most quadrature orders (with excpetions being SN orders 7 and
12). For the majority of the quadrature orders, CADIS-Ω gets more particles to the tally
region than CADIS in the same amount of time. By increasing quadrature order, CADIS-Ω
generally increases the number of particles to the tally as a whole, while CADIS remains fairly
constant. The table also shows that by using either the maximum or minimum relative error
to calculate the FOM, CADIS generally outperforms CADIS-Ω. However, while both the
maximum and minimum RE FOMs increase with increasing quadrature order in CADIS,
this is not the case for the tally average FOM. This could be interpreted as that as the
quadrature order increases, more particles reach the extreme tally bins, but fewer particles
end up in the tally overall. For CADIS-Ω, this behavior is not quite the same. Instead, a
peak occurs in the tally average FOMs at intermediate quadrature orders, and the minimum
RE FOM decreases with increasing quadrature order.

In the Subsection 4.2, it was discussed that while the FOM shows how quickly a tally
may approach a desired value, it does not show how effectively each method transported
particles to the tally location. Because the same particle count was used in each variation
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(a) Relative errors of CADIS results for differing SN orders.

of the steel beam problem in the angle sensitivity study, the relative error results achieved
by each method can reveal how well each method transported the same number of starting
particles. The next several plots will present this information.

Figures 4.43a and 4.43b show the relative errors for all tally bins for each quadrature order
run of the problem with the steel beam in concrete for CADIS and CADIS-Ω, respectively.
Unlike Table 4.23, these plots show the overall behavior of the tally results as a function of
changing quadrature order, so the behavior of non-extreme tally bins can also be observed.
As noted in the discussion accompanying Table 4.23, these intermediate are important in
evaluating the tally average relative error.

Figure 4.43a plots the tally relative error results for each of the CADIS runs, binned by
energy. The warmer colored red and orange lines show the low quadrature order results,
while the cooler colored lines correspond to higher quadrature results. For all of the energy
bins below 10−4 MeV, a reduction in the relative error with increasing quadrature order can
be observed. For quadrature orders SN 12 and above, the relative error does not show as
much of an improvement in the relative error. Between 10−4 and 100 MeV, large spikes in
the relative error for quadrature orders 5 and 10 exist, explaining the poor behavior of the
tally average RE FOM and tally maximum RE FOM for CADIS. Quadrature order 7 has
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(b) Relative errors of CADIS-Ω results for differing SN orders.

Figure 4.43: Relative error results for CADIS (Figure 4.43a) and CADIS-Ω (Figure 4.43b)
for different quadrature orders for the problem with a steel beam in concrete.

relative errors much closer to quadrature orders 12 and above. Because these relative error
spikes span so many bins, they affect the overall tally convergence, and, by extension, the
tally average FOM. At very high energies (> 100 MeV), there is very little improvement in
the relative error with increasing quadrature order.

Figure 4.43b shows the relative error results for CADIS-Ω. A number of interesting
features exist in this figure that are not reflected in Figure 4.43a. For example, in the lowest
energy region a decrease in the relative error is seen up to SN 10, but then the relative
error increases for higher SN orders. In the wider energy bins between 10−6 and 10−1 MeV,
quadrature orders 10 and above all achieve a similar relative error. This is not true in narrow
energy bins, where higher quadrature orders do tend to have a lower relative error. Moving
to higher energies, we can observe a significant spike in the relative error between 10−1 to
100 MeV for SN order 12. Although this spike does not span several energy bins like those
seen in Figure 4.43a, it is very high when compared to the other relative error bins. As
a result, this single tally bin throws off the tally average FOM results in addition to the
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tally maximum RE FOM, as observed in Table 4.23. In energy bins above this spike, most
quadrature orders produce similar FOMs. The lowest valued energy bin is located in this
high energy region.
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Figure 4.44: Relative error ratio (Eq. (4.1)) between CADIS-Ω and CADIS as a function of
quadrature order for the problem with a steel beam embedded in concrete.

While Figure 4.43 shows the how the relative errors of the tally change with different
quadrature orders, we have no indication of how CADIS and CADIS-Ω change in comparison
to one another. Figure 4.44 shows the relative error improvement factor for each quadrature
order. A value below unity indicates that CADIS-Ω achieved a better relative error than
CADIS for that bin and quadrature order. In this figure we can clearly see the effect that
the problematic energy bins in each method have on the improvement factor. In CADIS
we observed that bins in the 10−3 to 10−1 were problematic for quadrature order 10; this is
reflected in the very low value of IRE for that energy range and quadrature order, as shown in
by the orange line reaching the lowest values of IRE. Conversely, we observed that CADIS-Ω
had a very problematic energy bin between 10−1 and 100 at quadrature order 12. The value
of this IRE is far above the y-limit of Figure 4.43, illustrated with the yellow line.

Figure 4.43 also shows that quadrature order 10 is generally the order in which CADIS-
Ω outperforms CADIS the most. For this quadrature error, CADIS-Ω achieves the lowest
error when compared to CADIS. The reasons for this are twofold: first, it is one of the best
performing quadrature sets for CADIS-Ω, which achieves its lowest relative errors in almost
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every energy bin in this quadrature order; second, it is a very poorly performing quadrature
set for CADIS. This synergistic combination results in the best overall quadrature order for
CADIS-Ω.

A region where quadrature order 10 is not the best quadrature order is in energy regions
above 10−1 MeV, whre the higher quadrature orders–like 15, 17 and 20–outperform CADIS
more. In the low (< 10−5 MeV) and high (> 100 MeV) energy regions, CADIS-Ω obtains
lower relative errors than CADIS for all quadrature orders. In intermediate energy regions,
some spikes occur in regions that indicate a lower relative error is achieved by CADIS.
However, generally CADIS-Ω achieves lower relative errors than CADIS for most energy bin
and most quadrature orders. Returning again to the relative error figures of 4.43, the spike
in IRE between 10−5 and 10−4 MeV is explained by a relatively low relative error achieved
by CADIS, where in CADIS-Ω a large spike in the relative error occurs. This is reflected in
the ratio for IRE.
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Figure 4.45: Figure of merit improvement factor (Eq. (4.2)) between CADIS-Ω and CADIS
with changes in quadrature order for the problem with a steel beam embedded in concrete.

Figure 4.45 complements the results to Figure 4.44. Here the FOM improvement factor is
plotted rather than the relative error improvement factor. Because a higher valued FOM is
a better result, values above 100 indicate that CADIS-Ω outperformed CADIS. On this plot
it is quite clear that for higher energies, CADIS-Ω consistently outperforms CADIS more in
higher quadrature orders, as observed with IRE.
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Let us return again to the high and low-energy regions of the plot, as explored with
Figure 4.44. In this region it can be observed that for low energies, generally IFOM decreases
with increasing SN order. This behavior reverses at high energies, where the ratio increases
with increasing quadrature order. This may be an effect of anisotropy in each energy group,
as the highest energy has the most anisotropy in the flux. Recall from Section 4.2.4 that
the anisotropy metric was much higher at high energies than it was at low energies. It
is possible that for this more anisotropic energy group, increasing the quadrature order
improves the importance map in the Ω methods more, resulting in a better relative error,
and, consequently, a better FOM. This would also explain the complementary behavior
at low energies. Low energies generally have more isotropic behavior, and increasing the
quadrature order would not help to improve anisotropy information in the importance map.
As a result, increasing quadrature order would not help the FOM at low energies.

Despite a higher relative FOM at high energies, in higher quadrature orders CADIS-Ω’s
performance does not generally exceed CADIS’. For quadrature order 20, CADIS-Ω’s FOM
is almost always lower than CADIS. On Figure 4.45, the cooler toned lines which correspond
to higher quadrature orders have lower values than the warmer toned lines. For quadrature
order 5, the relative errors on Figure 4.44 were bookended by higher order quadratures at
middle and low energies. This behavior is not the same in Figure 4.45, where the lowest
quadrature order has a higher relative FOM than any of the quadrature orders above 10.
This means that the time required to solve higher quadrature orders affects the FOM more
negatively than the quadrature order decreases the relative error (and positively affects the
FOM). It could also mean that the relative error improvement changes more for CADIS than
CADIS-Ω with increasing quadrature order. As a result, the improvement factor at lower
quadrature orders is better for CADIS-Ω than at higher quadrature orders.

4.3.3 Scattering (PN) Order

Table 4.24 is much like that of Table 4.23, but with differing PN orders than quadrature
orders. The table is split into four regions, the first three corresponding to FOMs calculated
with different relative errors and the last corresponding to Monte Carlo and hybrid runtimes
for the problem. Each of the three first subsections of the table have different trends with
PN order, which will be described in the next several paragraphs.

In the tally average relative error subsection of the table one can see that CADIS has a
dip in the FOM for PN order 3; both PN orders 1 and 5 are higher overall. This effect is not
seen in CADIS-Ω, where a decrease in the FOM is observed with increasing PN order. As
a result, for CADIS-Ω, lower PN orders are sufficient for generating biasing parameters, but
for standard CADIS the highest PN order achieves the best tally average FOM. Further, for
every PN order, the tally average FOM is higher for CADIS-Ω than CADIS.

As with Table 4.23, a dip in CADIS’ FOMs is also observable in the maximum relative
error subsection of the table. However, the dip observable at PN order 3 also exists in the
CADIS-Ω FOMs. If a user desires to have all tally bins to be below a particular relative
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error, PN order 3 is the worst option for both methods in this problem. For PN order 1
CADIS-Ω is the better choice, and for PN order 5, CADIS is the better choice.

CADIS CADIS-Ω analog
PN order MC MChybrid MC MChybrid MC

tally avg
PN 1 1.76e+03 1.74e+03 2.99e+03 2.96e+03

1.39PN 3 671 661 2.97e+03 2.94e+03
PN 5 2.21e+03 2.16e+03 2.45e+03 2.42e+03

max RE
PN 1 7.19 7.09 8.06 7.98

0.0448PN 3 3.75 3.7 6.74 6.66
PN 5 14.8 14.5 8.24 8.12

min RE
PN 1 1.5e+03 1.48e+03 1.33e+03 1.31e+03 –
PN 3 1.43e+03 1.41e+03 1.32e+03 1.31e+03 –
PN 5 1.24e+03 1.22e+03 1.57e+03 1.55e+03 –

time (mins)
PN 1 394 399 2.09e+03 2.11e+03

22.3PN 3 413 419 2.1e+03 2.13e+03
PN 5 559 571 2.55e+03 2.59e+03

Table 4.24: Figure of Merit results for steel beam embedded in concrete, with variations in
PN order. Subdivisions of the table indicate calculations of the FOM using different relative
errors. The analog case has a single value for each relative error as it is not dependent on
changes in deterministic calculation parameters.

Comparing the FOMs for CADIS and CADIS-Ω using the minimum relative errors, some
interesting trends are visible. In Table 4.23 we observed that as quadrature order increased,
the minimum relative error FOM generally increased or stayed the same for both CADIS and
CADIS-Ω. This is not the case in Table 4.24. As PN order increases, the minimum relative
error FOM for CADIS decreases, but for CADIS-Ω it increases. This means that increasing
PN order does not move more particles (and reduce the relative error) in the energy bin with
the lowest relative error in CADIS, but it does in CADIS-Ω. Unlike the maximum relative
error subsection of the table, at low PN order CADIS outperforms CADIS-Ω, and at high
PN orders CADIS-Ω outperforms CADIS.

As with Table 4.23, Table 4.24 shows that the behavior of the FOMs do not follow
the same trends between different relative error measurements. Depending on the user
requirements for the method, one may be a better option than the other. For example, in
comparing the FOMs using the maximum relative error, CADIS is better with higher PN

order. With the FOMs using the minimum relative error, CADIS-Ω is better with higher
PN orders.

Looking at the timing results in the last section of the table, we can see that CADIS-Ω
takes at least five times longer than CADIS to perform a hybrid run. This is similar to
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what was observed for the quadrature order results. However, increasing PN order increased
CADIS Monte Carlo runtimes roughly 40% between PN orders 1 and 5, and increased CADIS-
Ω runtimes about 22% for the same quadrature orders. While the total amount of time
added to CADIS-Ω runtimes is longer, it is relatively less than the amount that was added
to CADIS.
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(a) Relative errors of CADIS results for differing PN orders.

Figures 4.46a and 4.46b provide additional information on interpreting Table 4.24. Figure
4.46a shows the tally relative error results for each of the PN order CADIS runs, and Figure
4.46b shows the relative error results for CADIS-Ω. In Figure 4.46a the highest relative error
for CADIS’ PN order 1 is the most thermal energy bin, for PN order 3 is the tally bin between
10−2, and for PN order 5 is the resonance region around 10−6. The lowest relative error bin,
however, is the same for all PN orders. This bin is located just below the highest energy
bin. The shifting location of the highest valued relative error energy bin helps to explain the
strange trend of the FOMS in the second region of Table 4.24. Because the relative error
bins become larger in epithermal energy groups at PN order 3, and this shift spans several
energy bins, it also helps to explain the tally average FOM shift to a lower value at PN order
3.
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(b) Relative errors of CADIS-Ω results for differing PN orders.

Figure 4.46: Relative error results for CADIS and CADIS-Ω with changes in PN order for
the problem with a steel beam in concrete.

In Figure 4.46b, no significant shift in the relative error happens at PN order 3. However,
we can observe a shifting location of the highest valued relative error. At PN order 1 the
highest valued relative error for CADIS-Ω is the lowest energy bin. At PN order 3 the highest
relative error bin is the resonance region located near 106 MeV, and at PN order 5 these two
bins appear to have a similar relative error. The highest overall observed relative error occurs
in PN order 3, which is why we see the shift to a lower FOM at PN order 3 for the maximum
relative error subsection of Table 4.24. This shift is not as significant as the several-bin
spanning shift in CADIS, so it does not affect the tally average FOM in CADIS-Ω.

From Figures 4.46b and 4.46a, we can conclude that shifts in the relative error that
dramatically change between PN orders can affect the overall tally convergence. This shift
is not predictable, and may not be observed if combined with a different set of deterministic
parameters, such as quadrature order 15, where both CADIS and CADIS-Ω have no spikes
in their relative errors.

Figure 4.47 shows the relative error improvement factor by different PN orders. This plot
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Figure 4.47: Relative error improvement factor (Eq. (4.1)) between CADIS-Ω and CADIS
with changes in PN order for the problem with a steel beam embedded in concrete.

complements what was observed in Figure 4.44. Recall that a value below unity indicates
that CADIS-Ω achieved a better relative error than CADIS for a given energy bin and
quadrature order. First, with the exception of a few energy bins in PN order 5, CADIS-Ω
has better relative errors than CADIS for the majority of PN orders and energy bins. In
general, PN order 3 has the most energy bins that obtain low values of IRE, and PN order
5 has the fewest.

Another interesting feature illustrated in this plot is that different PN orders perform the
best in distinct energy regions. At low energies PN order 1 achieves the best relative errors,
at intermediate energies PN order 3 achieves the best relative errors, and at high energies
all three perform similarly.

For all three PN orders, the energy bin located near 10−4 MeV is problematic. Returning
again to the relative error plots of Figures 4.46a and 4.46b, this particular energy bin had
a spike for CADIS-Ω, but remained relatively small for CADIS. The consistency in each
method’s performance across all PN orders is reflected in this problematic energy bin.

Figure 4.48 shows the FOM improvement factor with increasing PN order. As with the
quadrature orders, the runtimes of CADIS-Ω impact the FOMs that it achieves such that
many more energy bins are more in CADIS’ favor than in the relative error plot. However,
many more energy bins are above 100 IFOM in PN order than for quadrature order. As
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Figure 4.48: Figure of merit improvement factor (Eq. (4.2)) between CADIS-Ω and CADIS
as a function of PN order for the problem with a steel beam embedded in concrete.

with IRE, the shift in performance in different energy groups changes with PN order. At
low energies, PN order 1 achieves the best FOMs for CADIS-Ω, at intermediate energies PN

order 3, and at high energies all three PN orders have superior performance with CADIS-Ω.
It should be noted that there is no PN order for which CADIS-Ω obtains better FOMs

than CADIS in all energy bins. Contrast this to the relative error plot, where CADIS-Ω had
almost universally better relative errors than CADIS. Again this undescores the negative
impact that time has on CADIS-Ω’s FOM.

4.3.4 General Observations

At this point we are interested in which deterministic parameter value affects CADIS-Ω and
CADIS’ performance more significantly. We have looked at how varying each metric changes
the relative error, IRE, and IFOM , and from that we have observed trends associated with
varying each parameter. However, we have not compared each metric against the other.
Figures 4.49 and 4.50 aid in this comparison. As with PN order and SN order, these plots
show either the relative error or Figure of Merit results for the angle sensitivity study. Unlike
the plots with IRE and IFOM , these figures show how the FOM and relative error change
for a single method. That is, how much does the relative error or the Figure of Merit
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change between the lowest- and highest- valued parameters run for CADIS or CADIS-Ω.
These figures are useful to show how sensitive CADIS and CADIS-Ω are to PN order and
quadrature order, respectively.

In Figure 4.49, the ratio of the relative error in each tally bin is taken between the lowest
and highest-valued parameter run of the parametric study. For PN order (the purple lines in
the figure) this is calculated with REPN1/REPN5 and for quadrature order (the green lines in
the figure) it is calculated with RESN5/RESN20. A ratio above unity means that the relative
error obtained by the higher-valued parameter (PN order 5 or SN order 20) is lower than
that of the lower-valued parameter.
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Figure 4.49: Ratio in the relative errors between the lowest and highest variable in the angle
sensitivity study for CADIS and CADIS-Ω.

Figure 4.49 shows that a greater change in the relative error occurs for both CADIS and
CADIS-Ω from SN order 5 to 20 than it does for PN orders. A notable exception to this is for
CADIS in the energy range from 10−8 to 10−7 MeV, where the relative error improvement
for PN order exceeds any quadrature order line. Returning to the relative error results for
just CADIS, as shown in Figure 4.46a, this energy range has a very high relative error for
PN order 1, especially when compared to the other energy regions nearby. In this energy
range, the relative error drops from 0.015 to .005 from PN order 1 to 3, but the energy bin
immediately adjacent only drops about .005 total. The greater change in the relative error
for this region accounts for the spike we see in Figure 4.49.
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The data in this figure also shows us that increasing PN order for CADIS-Ω does not
reduce the relative error in the energy range from 10−3 to 100 MeV. CADIS-Ω’s purple line
on this figure is located below unity in that energy region. Generally this line for CADIS-Ω
does not see a huge improvement with increasing PN order. For a problem like this, a low
PN order may be a good enough choice.

CADIS’ results in the same energy region show improvement in the relative error. How-
ever, in many centrally-located energy bins, this improvement is very small. If a tally existed
for a similar problem in these energy ranges, it may be sufficient to use CADIS with a low
PN order as well.
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Figure 4.50: Ratio in the figure of merits between the lowest and highest variable in the
angle sensitivity study for CADIS and CADIS-Ω.

In Figure 4.50, the linestyles and colors match those in Figure 4.49. The y-axis of this
figure shows the ratio of the FOMs for the lowest- and highest-valued parameters. The
purple lines are calculated by the ratio of FOMPN1/FOMPN5; the green lines show the ratio
of FOMSN5/FOMSN20; the linestyles indicate the method type. In this plot, a low-valued
ratio reflects a higher valued FOM obtained by the finer PN or SN order.

Some features from 4.49 are continued in Figure 4.50. For example, the energy bins
between 10−8 and 10−7 MeV still show a large change for PN order in CADIS. However, the
addition of time to calculate the FOMs affects both methods. In Figure 4.49, we observed
that for both methods, increasing PN order or quadrature order generally decreased the



CHAPTER 4. CHARACTERIZATION PROBLEMS AND RESULTS 153

relative error. In Figure 4.50, this is not the case. At low energies, all methods have higher
FOMs with increasing parameter resolution. At intermediate energies, only SN order strongly
changes the FOM. At high energies, energy bins for both SN and PN order wildly oscillate
between improved and not improved.

The CADIS lines in Figure 4.50 generally lie at lower values than CADIS-Ω. Conse-
quently, larger changes in the FOM are observable with increasing either PN or SN order.
This is the case for most energy bins, but not above 100 MeV. In this region, CADIS-Ω and
CADIS shift between energy bins in which method sees a larger change with parameter value
selection.

By inspecting both Figure 4.49 and 4.50, a few common themes appear. First, CADIS
has a larger change in the tally relative error and FOM than CADIS-Ω for most energy bins.
Second, this general observation does not hold for energy bins greater than 10−1. At these
energy regions, CADIS-Ω achieves a better relative error with increasing SN order, but not
PN order. Neither CADIS-Ω or CADIS have a dominant trend in FOM values in this region.
Another observation is that generally SN order has a greater effect on the relative errors and
FOMS for both methods. This is not the case in the high energy region for FOM values,
where both methods are comparable.

4.4 Method Recommendations

The performance of CADIS-Ω has been characterized and compared against CADIS and a
standard, nonbiased analog Monte Carlo run for a series of problems. Section 4.2 showed
how varying geometric configuration and material composition of various problems with
anisotropy affected the performance of the Ω methods. Subsections 4.3.3 and 4.3.2 showed
how varying PN order and quadrature order changed the tally results and tally convergences
for the steel beam problem embedded in concrete. In doing this characterization, we sought
to determine in which problems and with which solver options the Ω methods were best
suited. A secondary objective was to determine the sensitivity of the Ω-methods to changes
in the solver options. With these objectives in mind, we can evaluate the Ω methods’
performance based on the study performed in the preceding subsections.

4.4.1 Problem Selection

Section 4.2 revealed that CADIS-Ω does not outperform CADIS for all problems containing
anisotropy in the flux. Depending on how and where the flux anisotropy was induced in
the problem, CADIS-Ω had the potential to significantly increase the FOM in Monte Carlo.
These results were not consistent, and are not entirely predictable.

In comparing the single turn and multiple turn labyrinths, it was observed that more
scattering effects decrease the effectiveness of CADIS-Ω. Because more scattering is required
to penetrate the multiple turn labyrinth, the performance of CADIS-Ω was poorer. In the
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single turn labyrinth energy bins that had more isotropy in the flux induced by scattering
also were poorer performing for CADIS-Ω.

To add to this complexity, problems with little- to no- scattering were also difficult
for CADIS-Ω to handle. These problems were also problematic for CADIS, as they were
generally comprised of “thin” materials to induce streaming effects. As a result, sampling
events occurred over several centimeters, which also was over several orders of magnitude
in flux change. This resulted in very high relative errors, as observed in the beam facility
problem. This was not as problematic in the therapy room example because the problem
was bounded by 10cm of concrete, which allowed for particle scattering rather than leakage.

Several material variants of the steel beam in concrete problem were run. The results of
this small study confirmed that both CADIS and CADIS-Ω obtain poorer FOMs with air
than with steel or concrete. In the case of the air variant, the FOMs obtained by CADIS-Ω
were generally lower than CADIS, but the relative errors were also better. For all material
variants of the steel beam problem, CADIS and CADIS-Ω achieved superior FOMs to the
nonbiased analog, but these were an order of magnitude lower for the air variant.

The rebar-embedded concrete problem showed that for problems with geometric complex-
ity, CADIS-Ω can also struggle. Because the rebar in this problem was not always directed in
line with the detector tally, particles could more freely move perpendicular to the tally path,
crossing out of importance with a preferential flowpath. As a result, in high energy bins
the tally relative error was very high for both CADIS and CADIS-Ω. However, CADIS-Ω’s
performance was poorer. The FOMs obtained by CADIS-Ω in this problem were one to two
orders of magnitude smaller than CADIS or the nonbiased analog.

CADIS-Ω achieved lower relative errors than CADIS for many problems, but often this
was offset by a very long runtime. The long runtime impacted the FOM. As a result, even
though CADIS-Ω achieves a lower relative error for the same particle count, it may be more
advantageous to simply run standard CADIS for longer. In a few instances, the runtime for
CADIS-Ω is comparable to CADIS. This occurs in the beam and therapy room problems,
for example. Although these problems are not the best for either CADIS or CADIS-Ω, there
is no caveat to using CADIS-Ω if choosing a hybrid method.

The characterization problems’ variations in material and geometric configuration showed
that there is no distinct behavior for which CADIS-Ω is universally better. However, in
problem geometries where preferential flowpaths are directed towards the tally detector, and
where materials provide short mean free paths to interaction or resampling sites, CADIS-Ω
is a well-suited method.

4.4.2 Deterministic Solver Choice

The angle-based parametric study provided a number of interesting obervations on the per-
formance of the Ω methods. First, the effect of Tdet does not change the FOM with CADIS-Ω
more than CADIS. In Section 4.3.2 the hypothesis that I/O requirements would severely im-
pact the FOM for CADIS-Ω was shown to not be as impactful as hypothesized. The FOM
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change between FOMMC and FOMhybrid was roughly the same for CADIS as CADIS-Ω
because the CADIS-Ω runtimes are so much longer than CADIS.

Next, the only consistent region in which CADIS-Ω outperforms CADIS is in high ener-
gies. For almost all PN orders and all quadrature orders, CADIS-Ω achieved lower relative
errors and higher FOMs than CADIS. In high energy bins, increasing quadrature order
showed a decrease in IRE, increasing PN order did not show a large change in IRE. In the
same bins, IFOM values above unity were observed for both PN and SN order, but no trends
with changing parameter value were observed.

By including the runtime to calculate the FOM, the comparative performance of CADIS-
Ω dropped when compared to using the relative error. Several energy bins in CADIS-Ω–for
quadrature orders and PN orders–achieved better FOMs than CADIS. However no PN order
consistently outperformed the other, while low SN orders generally achieved better FOMS
for CADIS-Ω than CADIS. However, despite the lack of consistent performance for a single
PN order, the raw values obtained with PN order are promising. With PN order there were
more energy bins that had high IFOM values than with quadrature order.

Another observation that can be extended from Section 4.2 is that CADIS-Ω consistently
biases particles better than CADIS. For the same number of source particles, CADIS-Ω
achieves lower relative error than CADIS for most energy bins with both PN order and
quadrature order. This means that while sampling may be slow, the importance map gener-
ated with the Ω flux is generally better at moving particles to the tally region than CADIS.

Based on the results in Section 4.3, a number of recommendations can be made based
on deterministic solver choice. First, the best PN order choice is dependent on the energy
range in which one is tallying. For low energy regions, PN order 1 will give the best FOMs
relative to CADIS, for intermediate energies PN 3 is a better choice, and for high energies
any PN order is satisfactory. In general, because lower PN orders have lower runtimes, these
will get the best results for CADIS-Ω the fastest, and have comparatively the best relative
errors and FOMs against CADIS. Next, the best SN order choice is

If one has to choose between varying PN order and SN order to improve the importance
map for their method, varying SN order will have a greater impact. This is the case for
using either CADIS or CADIS-Ω. However, both methods have a turnarount point at which
increasing SN order does not improve the relative error enough to offset the time increase
of the method. For CADIS-Ω, this occurs in bins above SN 15, and for CADIS it occurs in
bins aboe SN 12. For this type of problem, and using all energy bins in the tally, CADIS-Ω
will obtain the best results with a lower PN order and intermediate SN orders.

4.4.3 Lessons Learned

The characterization problems that were run were heavily biased towards low-density stream-
ing to induce anisotropy in the flux. This subset of problems, though highly anisotropic,
are not the best for a method so dependent on weight-window type biasing, because particle
streaming allowed for particles to cross several orders of magnitude in the flux before re-
sampling. This meant that in a high-importance region a particle may split many thousands
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of times in a new splitting event. Unfortunately, the Ω-methods are not immune to this issue
and so suffered the same effects as CADIS, even with positive effects like the reduction of ray
effects. Further, with the strong dependence on angle, the Ω-fluxes may have exacerbated
this streaming-sampling effect in regions with strong angular dependence around the detec-
tor. In a problem like the single turn labyrinth, where the Ω-flux generated a strong line of
importance between the exit of the labyrinth and the detector and drastically dropped the
importance behind the detector, a particle has much more opportunity to cross several orders
of magnitude of importance than it does in CADIS. This is likely what caused CADIS-Ω to
take longer in Monte Carlo transport than CADIS in many of the characterization problems.

It should also be noted that while the angle-dependent parametric study revealed how
PN order and quadrature order may affect a problem’s results, the best parameter choices
for this problem are by no means a prescriptive solution for other problems. Section 4.2
showed how different the characterization problems’ results were, depending on the source
definition, the material composition of the problem, and the geometric configuration of the
problem. Using the deterministic parameter choices that appear the best for the steel beam
in concrete may not be the best for, say, a multi-turn labyrinth. From this study we have
a good starting point from which to further characterize the method for other application
problems.
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Chapter 5

Conclusions

Hybrid methods are and will be a realm of continued importance in radiation transport
methods development. The application space and demand for hybrid methods continues
to grow. With this growth, accurately and efficiently modeling the physics of increasingly
complex problems is paramount for safety and security. In this dissertation, a new set of
hybrid methods were proposed, implemented, and characterized. From this work, several
pathways have revealed themselves for future hybrid methods work.

5.1 Assessment of the Ω-methods

The results in Chapter 4 showed that CADIS-Ω has varied performance when compared to
CADIS over the problem space investigated. Depending on the geometric configuration, the
material composition, and the solver options used, the method can outperform or under-
perform CADIS by an order of magnitude. This underscores the difficulty of developing a
method that is broadly applicable to a large subset of application space. Further, it illustrates
the necessity for further methods development.

Several characterization problems were formulated that contained anisotropy in the flux.
The mechanisms for inducing anisotropy in the flux anisotropy were either from the source,
or from physical interactions with the problem materials and geometry. The success of the
Ω-methods was not directly correlated with any single physical mechanism, but both CADIS
and CADIS-Ω struggled in problems primarily comprised of air.

In the single turn labyrinth, CADIS-Ω achieved lower relative errors in epithermal and
fast energy groups. These groups were shown to have flux anisotropies with anisotropy
distributions that were clumped around a particular anisotropy value. For the multiple turn
labyrinth, CADIS achieved uniformly lower relative errors than CADIS-Ω. For both the
steel beam in concrete and the u-shaped bend, CADIS-Ω achieved lower relative errors than
CADIS but had runtimes 3-7x longer than those of CADIS. For the geometrically complex
rebar-embedded concrete, CADIS-Ω had higher relative errors than CADIS. In high energy
regions, the convergence for energy bins would take days of computational runtime to get
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to a relative error of less than 10%. For two heavily air-centered problems, CADIS-Ω and
CADIS both had comparable relative error achievements.

In addition to checking the limitations of the Ω-methods with respect to geometry and
material composition, the sensitivity of the methods to deterministic parameter selection
was also studied. In particular, the effect of quadrature order and PN order on method
performance were studied. For both CADIS and CADIS-Ω, the change in quadrature order
had a stronger effect on the change in the relative error and the FOM. CADIS showed stronger
sensitivity to changes in both PN order and quadrature order over CADIS-Ω. CADIS also
proved to have more and higher magnitude oscillations in the relative error between different
PN and quadrature orders. Spikes in the relative error occurred in both methods, but more
frequently in CADIS. Both methods showed improvement in the FOM and relative error with
increasing quadrature order and PN order. In high energies, CADIS-Ω achieved superior
FOMS to CADIS for all PN orders and quadrature orders.

Chapter 4 showed a few examples of the anisotropy metrics when they showed promising
trends with IRE or IFOM . These metrics did provide information on the relative distribution
of anisotropy in the problem, and they also showed some trends with the improvement
factors. However, most problems did not have significant trends, so more work must be done
to fully characterize hybrid methods using this novel analysis technique.

The Ω-methods have been characterized with their sensitivity to geometric and material
configuration, as well as their sensitivity to deterministic calculation parameter choice. It is
clear from the results in Sections 4.2 and 4.3 that the Ω-methods are not always the best
choice for reducing the variance in problems with anisotropy. This is from a combination of
many effects, but primarily the varied range of runtimes when compared to CADIS. In many
problems, CADIS-Ω was able to obtain lower relative errors for tally bins than CADIS, but
the runtimes were significantly longer. The generally longer runtime for CADIS-Ω negatively
impacts the FOMs that it is able to achieve, thus negating its more effective transport of
particles.

5.2 Suggested Future Work

While this dissertation covered the characterization of CADIS-Ω over a fairly broad spectrum
of anisotropy-containing problems, there are a number of fruitful pathways by which the
method could be improved or characterization expanded. Broadly, these fall into three
categories: improvements to the software implementation and algorithmic design, expansion
of the characterization space, and application to larger, real-life problems. The next few
subsections addresses each one of these categories individually.

5.2.1 Software Improvement

This subsection addresses the improvements that could be made to the software and analysis
methods to enhance understanding of the omega methods. A discussion on how improving
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software performance aids in future work will start this section. An explanation of how
extending the breadth of analysis helps to understand the Ω-methods further will finish the
section.

To calculate the Ω flux, a rotation of either the adjoint or forward flux matrix is required
to ensure that the directional variable Ω is consistent between the forward and adjoint, or that
Ωadjoint = Ωforward. Because quadrature sets are not always straightforward to interpolate,
a rotationally symmetric quadrature set is currently required for computing the Ω-fluxes in
order to perform this rotation. Should a method be developed that does have interpolatable
quadrature points, it would be a good candidate to calculate Ω-fluxes for solutions that are
not rotationally symmetric.

The anisotropy metrics described in Section 3.2.1 at this point have not shown significant
trends with either the relative error or figure of merit improvement metrics (IRE and IFOM).
To filter out values of each metric to regions more important to the problem solution, two
filtering algorithms were proposed: one that only uses values of metrics from cells with
contributon fluxes above the mean contributon flux, and the other that uses values from
cells that have a flux above the median contributon flux. Using these filtering algorithms
did show interesting features in the anisotropy metric distributions as well as shifts in IRE
and IFOM . However, trends were not apparent for the majority of the metrics. A useful
modification to the filtering algorithm would be to select certain percentages of high-valued
contributon flux locations. For example, perhaps selecting out the cell locations containing
the top 10% of contributon fluxes would reveal a trend in the improvement metrics. It is
possible that too many values are being selected from the entire problem even with the
existing filters, so an even stricter filtering algorithm may help.

To filter the anisotropy metrics, the contributon flux distribution was chosen as the filter
base. This is an intuitively good choice because it will use values near both the forward-
and adjoint- sources, and also the values between them where particles are most likely to
flow. Further, the contributon flux is something that is method agnostic. That is, it can be
used as a filtering algorithm for non-Ω methods and it will still reveal problem information.
However, an argument could also be made to use the omega flux distribution as a filtering
base, as that is the method in which we are interested. Modifying the filtering algorithms
to use the Ω-flux distribution may provide trends in the method improvement metrics that
are not apparent using the contributon flux.

The Ω-methods, as currently implemented in both Exnihilo and ADVANTG, are entirely
serial. That is, there is no parallelization in any part of the Ω-flux calculation, or supporting
code to that effect. In the results presented in Chapter 4, Thybrid was calculated to remove
parallelization effects so that CADIS and CADIS-Ω were comparable. While the results were
adjusted accordingly, this is not the best implementation for production software or more
difficult use cases. As mentioned previously, the ADVANTG software is entirely serial, so
parallelization is not required for VR parameter generation. However, Exnihilo/Denovo is
parallelized. The parallelization of the Ω-flux calculation in this code would significantly
improve its usability. Parallelization would reduce the actual time to calculate the Ω-fluxes
and anisotropy metrics.
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Another algorithmic improvement to the Ω-methods is to reduce the memory require-
ments for both the computation of the Ω-fluxes and the anisotropy metrics. Much of this
could be accomplished with parallelization. However, even the serial version of the Ω-
methods could be adjusted to read in the angular flux data in “chunks” so as to not read
in datasets larger than the memory available on the system. As a first order approach, the
angular fluxes could be read in serially by energy group. Depending on the energy group
structure, this has the potential to reduce the memory load at a particular time by 20x or
200x. At present, the Ω-methods are limited by memory requirements. Without a large com-
puting cluster, there is no feasible way to calculate the Ω-fluxes for a problem of reasonable
complexity.

Another alternative modification to the Ω-methods is to bypass writing the angular flux
matrices entirely. This would reduce the I/O requirements for the method, and also not
demand as much disk space. However, this is a non-trivial task, as the forward and angular
fluxes for a cell must both be in memory to compute the Ω-method for that cell. To store the
complete angular flux matrices in memory will present the same memory limitations that
the Ω-methods currently face, so some algorithmic challenges exist should this be a path of
future work.

The Ω-methods are currently implemented on a localized development version of both
Exnihilo and ADVANTG. If a larger audience wishes to use or access them, they would
require support beyond that of a standard software release. Depending on the continued
characterization of the Ω-methods, integrating this software into future releases of Exnihilo
and ADVANTG may be useful.

Each of the areas proposed in the previous paragraphs are areas in which the Ω-methods
can be improved upon or areas that may improve our understanding of the Ω-methods’
behavior. Expanding the filtering algorithm for the anisotropy metrics may also help us to
understand more broadly how anisotropy is distributed in different problems. Expanding our
understanding of the Ω-methods’ strengths and deficiencies can also improve future hybrid
methods.

5.2.2 Characterization Problem Extension

Broadening the scope of the characterization problem study is another fruitful avenue for
exploration. In this vein, there exits a two-pronged approach: first extending the types of
problems (more diverse materials, less air in problems, more diverse geometries) will enhance
knowledge of the methods. Next, extending the scope of the parametric studies will help to
inform how resilient the Ω-methods might be to changes in the solutions space that indirectly
impacts angle. In this realm, the deterministic calculation specifics, like quadrature type will
be addressed.

The characterization problems studied covered a broad range of anisotropy-inducing
physics. The geometries chosen were fairly simple, with very few materials. The major-
ity of the problems used air in some portion of their geometry to have streaming-induced
anisotropy of the flux. Depending on their geometries, this caused sampling issues and
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slowdown of the CADIS-Ω method. For example, the problem variants of the steel beam
embedded in concrete geometry illustrated the CADIS-Ω method’s susceptibility to air. In
the air-filled beam variant of the problem, the Ω-method had the lowest improvement margin
when compared to CADIS of the three matierial variants. A beneficial extension of the char-
acterization problem study would be to replace the air in this geometry with a high atomic
mass material that maintains scattering anisotropy but includes more sampling interaction
points. Using problems with greater material diversity and more problems with preferen-
tial flowpaths (that are not air), would be an interesting extension to the characterization
problem materials.

While the characterization problems are fairly simple geometrically, it may be advanta-
geous to investigate simpler problem geometries with even less geometric complexity. In com-
paring the single- and multiple-turn labyrinths, we observed that with too little anisotropy
in the problem, the Ω method’s performance suffers. However, a simpler geometry of the
labyrinth (perhaps an elbow bend), or a hallway in concrete with no air rooms, can show if
there is a turnover in labyrinth anisotropy in which the Ω methods perform the best.

The results presented in Section 4.3 showed that CADIS-Ω is generally more resilient than
CADIS to changes in quadrature and PN discretization. As a result, CADIS-Ω can use a
coarser problem discretization to obtain variance reduction parameters, saving computational
cost in terms of both runtime and memory. The results in Section 4.3 also showed that
CADIS-Ω was less susceptible to large fluctuations in the relative errors in intermediate
energy energy bins.

Beyond sensitivity to quadrature order and PN order, it may be worth investigating the
sensitivity of each method to other deterministic calculation parameters. If, like quadrature
order and PN order, CADIS-Ω generates better importance maps with lower-fidelity solutions
in other deterministic parameters, then even more computational time could be saved. For
something like mesh refinement, the number of mesh cells can significantly alter the speed
at which the deterministic solution converges.

Investigating the impact of quadrature type may also be an area of future work. In
Section 4.3, it was observed that both CADIS and CADIS-Ω showed greater sensitivity to
changes in quadrature order than PN order. CADIS showed a greater sensitivity to changes
in quadrature order than CADIS-Ω. We expect that the behavior of other quadrature sets
will be similar, but this may be worth verifying in future use cases. It is possible that the
different properties of different quadrature sets may more strongly affect the Ω-methods’
performance.

In addition to characterizing the performance of CADIS-Ω, it will be important to charac-
terize FW-CADIS-Ω. In Chapter 3, the Ω-method theory for both CADIS and FW-CADIS
were presented. Indeed, FW-CADIS-Ω has also been implemented in Exnihilo and AD-
VANTG. The scope of this project did not extend to the characterization of FW-CADIS-Ω,
though it could prove useful to characterize for large, global calculations. A similar set of
characterization problems can be designed for FW-CADIS-Ω, but with global mesh tallies
rather than small detectors.

It would also be beneficial to perform a thorough investigation into the Ω-methods’
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mitigation or multiplication of ray effects. Both the forward and the adjoint angular fluxes
will have ray effects in problems with long mean free paths. As discussed in Section 4.2,
the ray effects may also be multiplied depending on the geometric configuration of the
problem. The degree to which the Ω-flux exacerbates or minimizes ray effects as a function
of these locations would be an interesting study and may help in further specifying to which
problems the Ω-methods is suited. Further, the difference in the construction of the adjoint
between CADIS and FW-CADIS means that CADIS-Ω and FW-CADIS-Ω will have different
sensitivities to ray effects.

Further characterization of the Ω methods’ performance with different problem geom-
etry and material configurations will deepen our understanding for which applications the
methods may be best suited. For large scale, high-impact, high-complexity problems, issues
observed in the characterization problem studies may be exacerbated. Before applying this
method to application problems, it will be important to have confidence that the methods
will achieve better results than other methods.

5.2.3 Application Problems

Based on the data presented in Sections 4.2 and 4.3 we believe that the CADIS-Ω-method
has the potential to be applied to a number of application problems. These problems include,
but are not limited to: detectors near dry cask nuclear waste storage, dry cask storage beds,
nuclear containment buildings, and nuclear spent fuel cooling pools.

The dry casks are a promising use case for the CADIS-Ω-method because they have small
air channels for ventilation, but their body is primarily metal tubes containing nuclear fuel
surrounded by concrete. These rods are pointed towards the ventilation ducts, and so the
results from the steel bar embedded in concrete suggest that this may be a more complex
application of the physics it represents.

Further, a bed of dry cask storage containers will have several spaces through which
particles may travel. A use case of this may be to calculate the dose rate standing at the
boundary of such a facility, or to consider if the cask loading matches the owner-provided
loading list. Because this problem has so much air, it may be more difficult for the Ω-
methods. However, with the thick soil boundary in the z−plane the Ω-methods may still
perform well.

Nuclear spent cooling pools have used fuel rods clustered in assemblies arranged in rows
submerged in water. These rods emit a range of highly energetic particles. Spent fuel cooling
pools will be an interesting extension of the steel beam in concrete, as water is a highly
moderating material not dissimilar to the concrete from the characterization problem. The
fuel rods act as both a source and a preferential flowpath, so the differing source distribution
in this problem may yield interesting results.

Each of these application problems uses the physics modeled in the characterization prob-
lems but applies them to a more geometrically and materially complex problem. In extending
the Ω-methods to these problems and comparing them to CADIS and FW-CADIS, we can
also understand how sensitive the Ω-methods are to more difficult problems. If, as noted in
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the characterization problems subsection, the Ω-methods are more resilient to deterministic
problem solution fidelity in larger more complex problems, these problems will benefit signif-
icantly from the decreased deterministic solution time and the lower computational burden
demanded by the Ω-methods.

5.3 Concluding Remarks

In this dissertation, a new group of hybrid methods called the Ω-methods were proposed. The
Ω-methods are built on the foundational work of CADIS and FW-CADIS to generate angle-
informed variance reduction parameters. The two new methods proposed were CADIS-Ω and
FW-CADIS-Ω. Both methods use the Ω-flux, a form of the adjoint scalar flux calculated by
weighting the adjoint angular flux with the forward angular flux, to generate source biasing
and weight window values. By using the forward angular flux normalization, the importance
map generated for the Ω-methods is adjusted to include the directionality of the forward
and the adjoint particles without explicitly including angle in the source biasing or weight
window values.

The Ω-methods were implemented in two software packages developed at Oak Ridge
National Laboratory: Exnihilo and ADVANTG. The functionality to generate the Ω-fluxes
were implemented in Exnihilo, which contains the deterministic transport solver Denovo.
The infrastructure to generate variance reduction parameters consistent with CADIS and
FW-CADIS was implemented in ADVANTG. The development of these methods now allows
for any user to use the Ω-methods, should they have access to the software.

In addition to the Ω-methods method proposal and implementation, CADIS-Ω has been
characterized on a wide variety of problems with flux anisotropies. The problems were
designed to understand the method’s limitations and in what parameter space the method
can and should be used. To more fully understand the method’s’ behavior and how flux
anisotropy affected its ability to perform, a number of anisotropy metrics were proposed.
These metrics were then used to investigate if performance improvement could be correlated
with anisotropy in any way.

The anisotropy metrics did not show significant trends with the FOM or the solution
relative error, but their distributions did help reveal more about the distribution of anisotropy
in the problems. In particular, it was easily observable how the distribution of anisotropy
changed between energy groups for a particular problem. Future use of these metrics may
also aid us in more fully understanding other hybrid methods’ performance.

CADIS-Ω is a promising hybrid method. If used with a well-suited problem, it has
the potential to improve the FOM over traditional methods by an order of magnitude.
This offers significant time and energy savings. However, the Ω-methods are not without
their drawbacks. If used in a poorly-suited problem they can take substantially more time
to transport particles in Monte Carlo. The Ω-methods’ characterization and performance
study presented in this dissertation have contributed a broader understanding of these types
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of hybrid methods, and have created ample pathways forward for future hybrid methods
analysis.
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Appendix A

Software for this Project

The majority of the software for this method is available in open source repositories. This
includes the characterization problem inputs, the scripts used to postprocess the HDF5 and
SILO files, and the datasets that were used to generate these results. The next few subsec-
tions of this appendix contain the URLs and descriptions of how to access these publicly-
available resources. However, some of the software–namely the code added to ADVANTG
and the Exnihilo code suite–are export controlled and is not freely available. The code used
for that will be included here, and what is easily separable is committed separately in a
different repository.

The version of Exnihilo used to run this work was:
branchname: angular hybrid method
commit hash: 81fd08b8cc62b00ee72a2305c5f4493691acb059

The version of ADVANTG used to run this work was:
branchname: MMM
commit hash: 03321f9fb084e3b9219c07c454e0c6d265a565f1

A.1 Omega Flux Calculation

The majority of the software for this method are available in open source repositories. The
snippet in this subsection is contained in Exnihilo, which is not publicly available. As such,
snippets will be included here for transparency.

############################################################################
# Fi l e : omnibus/ po s t p roce s s / i n t e g r a t o r . py
# Author : Madicken
# Date : Tue Mar 17 16 :41 :55 2015
#
# <+ This f i l e ho l d s a l l o f the t o o l s necessary f o r doing the post−proce s s ing
# of a . t x t output f i l e , i n t e g r a t i n g the ad j o i n t and forward angu lar f l u x e s ,
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# and re tu rn ing
# the ad j o i n t s c a l a r f l u x in a . s i l o f i l e r eadab l e by Advantg . +>
############################################################################
from f u t u r e import ( d i v i s i o n , abso lute import , p r i n t f u n c t i o n , )
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
import numpy as np
import os
import re
import h5py
from nemesis import ( const View Fie ld Dbl )
from nemesis import ( S i lo Mesh Writer as S i l oMeshFi l e )

############################################################################

class h5reader ( object ) :
def i n i t ( s e l f , f i l ename , a d j o i n t=False ) :

# dec l a r e a l l v a r i a b l e s t ha t t h i s o b j e c t w i l l conta in ; f i l ename i s a
# requ i r ed user input and ad j o i n t mode i s Fa lse by d e f a u l t . A
# True w i l l r e s u l t in a matrix r o t a t i on to ensure the omega
# coord ina t e s in fo rard and ad j o i n t are c on s i s t e n t .
s e l f . f i l ename = str ( f i l ename )
s e l f . a d j o i n t = a d j o i n t
s e l f . mesh g = [ ]
s e l f . mesh x = [ ]
s e l f . mesh y = [ ]
s e l f . mesh z = [ ]
s e l f . quadrature we ights = [ ]
s e l f . a n g u l a r f l u x = [ ]
s e l f . ang l e s = [ ]
s e l f . group bounds = [ ]
pass

def c a l l ( s e l f ) :
pass

def f i l e r e a d e r ( s e l f ) :
h 5 f i l e = h5py . F i l e ( s e l f . f i l ename , ’ r ’ )

# Read in the data from h 5 f i l e
s e l f . ang l e s = h 5 f i l e [ ’ /denovo/ ang l e s ’ ] [ : ]
a n g u l a r f l u x = h 5 f i l e [ ’ /denovo/ a n g u l a r f l u x ’ ] [ : ]
s e l f . mesh g = h 5 f i l e [ ’ /denovo/mesh g ’ ] [ : ]
s e l f . mesh x = h 5 f i l e [ ’ /denovo/mesh x ’ ] [ : ]
s e l f . mesh y = h 5 f i l e [ ’ /denovo/mesh y ’ ] [ : ]
s e l f . mesh z = h 5 f i l e [ ’ /denovo/mesh z ’ ] [ : ]
s e l f . group bounds n = h 5 f i l e [ ’ /denovo/ group bounds n ’ ] [ : ]
s e l f . quadrature we ights = h 5 f i l e [ ’ /denovo/ quadrature we ights ’ ] [ : ]

# Set v a r i a b l e s f o r the expec ted s i z e o f the data
z l e n = len ( s e l f . mesh z)−1
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y l e n = len ( s e l f . mesh y)−1
x l e n = len ( s e l f . mesh x)−1
g l e n = len ( s e l f . mesh g )
m len = len ( s e l f . quadrature we ights )

# cons ider pu t t i n g an a s s e r t i on to check the v a r i a b l e s ra the r than
# trimming i t .

# Remove padding from the angu lar f l u x matrix
s e l f . a n g u l a r f l u x = a n g u l a r f l u x [ : g l en , : z l en , : y len , : x len , : m len ]

# Resort the angu lar f l u x e s to match −omega f o r the
# ad j o i n t c a l c u l a t i o n
i f s e l f . a d j o i n t == True :

a n g l e l o c s = h5reader . l o c a t i o n g e n e r a t o r ( s e l f , s e l f . ang l e s )
new f lux = h5reader . s o r t b y r e v e r s e a n g l e s ( s e l f , s e l f . angu la r f l ux ,

s e l f . ang les , a n g l e l o c s )
s e l f . a n g u l a r f l u x = new f lux

def l o c a t i o n g e n e r a t o r ( s e l f , data ) :
l o c a t i o n d i c t = {}
for d in range ( len ( data ) ) :

l o c a t i o n d i c t [ str ( data [ d ] ) ] = d
return l o c a t i o n d i c t

def s o r t b y r e v e r s e a n g l e s ( s e l f , data , angles , a n g l e d i c t ) :
r e v e r s e d a t a = np . z e r o s (np . shape ( data ) )
for ang le in ang l e s :

r e v e r s e d a t a [ : , : , : , : , a n g l e d i c t [ str ( ang le ) ] ] = \
data [ : , : , : , : , a n g l e d i c t [ str(−ang le ) ] ]

return r e v e r s e d a t a

class I n t e g r a t o r ( object ) :
def i n i t ( s e l f , forwarddata , ad jo in tdata ) :

s e l f . forwarddata = forwarddata
s e l f . ad jo in tdata = ad jo in tdata
s e l f . in tegrated numerator = [ ]
s e l f . in tegrated denominator = [ ]
s e l f . i n t e g r a t e d f l u x e s = [ ]
s e l f . mesh g = ad jo in tdata . mesh g
s e l f . mesh z = ad jo in tdata . mesh z
s e l f . mesh y = ad jo in tdata . mesh y
s e l f . mesh x = ad jo in tdata . mesh x
s e l f . group bounds n = ad jo in tdata . group bounds n

# ani so t ropy metr ic v a r i a b l e s . Used in the case o f an i so t ropy
# qu an t i f i c a t i o n f o r omega−method ana l y s i s . See
# quan t i f y an i s o t r o p y
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# func t i on f o r d e s c r i p t i o n s o f each metr ic .
s e l f . f o rward an i so t ropy = np . array ( [ ] )
s e l f . a d j o i n t a n i s o t r o p y = np . array ( [ ] )
s e l f . c on t r i bu ton an i s o t r opy = np . array ( [ ] )
s e l f . metr i c one = np . array ( [ ] )
s e l f . metr ic two = np . array ( [ ] )
s e l f . m e t r i c t h r e e = np . array ( [ ] )
s e l f . m e t r i c f o u r = np . array ( [ ] )
s e l f . m e t r i c f i v e = np . array ( [ ] )
s e l f . m e t r i c s i x = np . array ( [ ] )
s e l f . met r i c s even = np . array ( [ ] )
pass

def c a l c u l a t e w e i g h t e d f l u x e s ( s e l f ) :
# Fi r s t unpack the r e l e v an t data from ob j e c t c rea t ed in

# f i l e r e a d e r
f o r w a r d f l u x = s e l f . forwarddata . a n g u l a r f l u x
a d j o i n t f l u x = s e l f . ad jo in tdata . a n g u l a r f l u x
quadrature we ights = s e l f . forwarddata . quadrature we ights

# Create numerator and denominator arrays
numerator = f o r w a r d f l u x [ : , : , : , : ] ∗ \

a d j o i n t f l u x [ : , : , : , : ] ∗ quadrature we ights
denominator = f o r w a r d f l u x [ : , : , : , : ] ∗ quadrature we ights

# In t e g r a t e the denominator and numerator s epara t e l y ,
# then d i v i d e the
# va lue s to ob ta in a weigh ted ad j o i n t s c a l a r f l u x
in tegrated numerator = 4 .∗np . p i ∗np .sum( numerator , a x i s =4)
integrated denominator = np .sum( denominator , a x i s =4)
try :

w e i g h t e d s c a l a r f l u x = \
np . d i v id e ( integrated numerator ,\
i n tegrated denominator )

except RuntimeWarning :
pass
print ( ’You have a 0 d i v i s i o n er ror , \

r e p l a c i n g f i r s t element with 0 ’ )
w e i g h t e d s c a l a r f l u x [ 0 , 0 , 0 , 0 ] = 0 .0

s e l f . i n t e g r a t e d f l u x e s = w e i g h t e d s c a l a r f l u x
s e l f . in tegrated numerator = integrated numerator
s e l f . in tegrated denominator = integrated denominator
pass

def q u a n t i f y a n i s o t r o p y ( s e l f ) :
# Fi r s t unpack the r e l e v an t data from ob j e c t
# crea ted in f i l e r e a d e r
f o r w a r d f l u x = s e l f . forwarddata . a n g u l a r f l u x
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a d j o i n t f l u x = s e l f . ad jo in tdata . a n g u l a r f l u x
omega f luxes = s e l f . i n t e g r a t e d f l u x e s
c o n t r i b u t o n f l u x e s = s e l f . in tegrated numerator
fwd quadrature we ights = s e l f . forwarddata . quadrature we ights
ad j quadra ture we ight s = s e l f . ad jo in tdata . quadrature we ights

# Create forward in f o
forward mat = f o r w a r d f l u x [ : , : , : , : ] ∗ fwd quadrature we ights
f w d s c a l a r s = np .sum( forward mat , a x i s =4)
fwd max val = forward mat .max( a x i s =4)
fwd min val = forward mat .min( a x i s =4)
fwd quad sum = np .sum( fwd quadrature we ights )

# Create ad j o i n t i n f o
adjo int mat = a d j o i n t f l u x [ : , : , : , : ] ∗ ad j quadra ture we ight s
a d j s c a l a r s = np .sum( adjo int mat , a x i s =4)
adj max val = adjo int mat .max( a x i s =4)
ad j min va l = adjo int mat .min( a x i s =4)
adj quad sum = np .sum( ad j quadra ture we ight s )

# Create con t r i bu ton in f o
contr ibuton mat = 4 .∗np . p i ∗ a d j o i n t f l u x [ : , : , : , : ] ∗ \

f o r w a r d f l u x [ : , : , : , : ] ∗ fwd quadrature we ights
c o n t s c a l a r s = c o n t r i b u t o n f l u x e s
# con t s c a l a r s = np . sum( contr ibuton mat , a x i s =4)
cont max val = contr ibuton mat .max( a x i s =4)
cont min va l = contr ibuton mat .min( a x i s =4)

# now quan t i f y forward an i so t ropy
av g f l ux = f w d s c a l a r s / fwd quad sum
f w d r a t i o = fwd max val / av g f l ux

# now quan t i f y ad j o i n t an i so t ropy
av g f l ux = a d j s c a l a r s / adj quad sum
a d j r a t i o = adj max val / a vg f l ux
a d j r a t i o m i n = np . d i v id e ( adj max val , ad j min va l )

# ca l c u l a t e the con t r i bu ton r a t i o ( advantg does t h i s a l r eady )
s c a l a r c o n t p r o d u c t = a d j s c a l a r s ∗ f w d s c a l a r s

# quan t i f y con t r i bu ton r a t i o ( Metric No . 1)
c o n t r a t i o o n e = s c a l a r c o n t p r o d u c t / c o n t s c a l a r s

# ca l c u l a t e the r a t i o between omega and ad j o i n t
# f l u x e s ( Metric No . 2)
c o n t r a t i o t w o = omega f luxes / a d j s c a l a r s

# quan t i f y max to avg con t r i bu ton an i so t ropy
# (Metric No . 3)
av g f l ux = c o n t s c a l a r s / fwd quad sum
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c o n t r a t i o t h r e e = cont max val / a vg f l ux

# quan t i f y the r a t i o between omega and ad j o i n t f l u x e s
# (Metric No . 4)
c o n t r a t i o f o u r = c o n t r a t i o t h r e e / a d j r a t i o

# quan t i f y max to min con t r i bu ton an i so t ropy
# (Metric No . 5)
c o n t r a t i o f i v e = np . d i v id e ( cont max val , cont min va l )

# quan t i f y the r a t i o between omega and ad j o i n t f l u x e s
# (Metric No . 6)
c o n t r a t i o s i x = c o n t r a t i o f i v e / a d j r a t i o m i n

# load the an i so t ropy r a t i o s in t o o b j e c t
s e l f . f o rward an i so t ropy = f w d r a t i o
s e l f . a d j o i n t a n i s o t r o p y = a d j r a t i o
s e l f . metr i c one = c o n t r a t i o o n e
s e l f . metr ic two = c o n t r a t i o t w o
s e l f . m e t r i c t h r e e = c o n t r a t i o t h r e e
s e l f . m e t r i c f o u r = c o n t r a t i o f o u r
s e l f . m e t r i c f i v e = c o n t r a t i o f i v e
s e l f . m e t r i c s i x = c o n t r a t i o s i x

class SaveData ( object ) :
def i n i t ( s e l f , data ) :

s e l f . data = data
s e l f . mesh x = data . mesh x
s e l f . mesh y = data . mesh y
s e l f . mesh z = data . mesh z
s e l f . mesh g = data . mesh g
s e l f . i n t e g r a t e d f l u x e s = data . i n t e g r a t e d f l u x e s
s e l f . f o rward an i so t ropy = data . f o rward an i so t ropy
s e l f . a d j o i n t a n i s o t r o p y = data . a d j o i n t a n i s o t r o p y
s e l f . c o n t r i b u t o n f l u x = data . in tegrated numerator
s e l f . c on t r i bu ton an i s o t r opy = data . con t r i bu ton an i s o t r opy

# conver t the mesh v e c t o r s to c e l l −centerd va l u e s
x = s e l f . m idpo in t f i nde r ( s e l f . mesh x )
y = s e l f . m idpo in t f i nde r ( s e l f . mesh y )
z = s e l f . m idpo in t f i nde r ( s e l f . mesh z )
( s e l f . Z , s e l f .Y, s e l f .X) = np . meshgrid ( z , y , x , index ing=’ i j ’ )
pass

def omega by group ( s e l f , f i l ename ) :
’ ’ ’ This f unc t i on saves the i n t e g r a t e d angu lar f l u x e s
in t o the s i l o f i l e by
group . ’ ’ ’
# f i r s t d e l e t e the f i l e i f i t a l r eady e x i s t s
f i l ename = str ( f i l ename )
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os . system ( ’rm %s ’ %( f i l ename ) )

# wr i t e the data by group in t o a s i l o f i l e wi th the
# f i l ename s p e c i f i e d by
# the user .
with S i loMeshFi l e ( ’%s ’ %f i l ename ) as f :

f . write mesh (∗map( const View Fie ld Dbl . fromarray , ( s e l f . mesh x ,
s e l f . mesh y , s e l f . mesh z ) ) )

f . wr i t e ( ”x” , s e l f .X)
f . wr i t e ( ”y” , s e l f .Y)
f . wr i t e ( ”z” , s e l f . Z)
for group in s e l f . mesh g :

f . wr i t e ( ” omega f lux %03d” %(group ) , \
s e l f . i n t e g r a t e d f l u x e s [ group ] )

def a n i s o t r o p i e s t o h d f 5 ( s e l f , f i l ename ) :
’ ’ ’ Saves q u an t i f i e d an i s o t r o p i e s to an hdf5 f i l e f o r
po s t p ro c e s s i n g .

I f a l l a n i s o t r o p i e s are ca l cu l a t e d , then the f i l e
w i l l i n c l ude metr ic s one through s i x ( see
In t e g r a t o r . q uan t i f y an i s o t r o p y f o r a d e s c r i p t i o n
o f each metr ic ) , the forward , ad jo in t , and con t r i bu ton
an i s o t r op i e s , and the con t r i bu ton s c a l a r f l u x . ’ ’ ’
f i l ename = str ( f i l ename )
os . system ( ’rm %s ’ %( f i l ename ) )

metricnames = {”one” : s e l f . data . metr ic one ,
”two” : s e l f . data . metric two ,
” three ” : s e l f . data . met r i c th ree ,
” four ” : s e l f . data . met r i c f our ,
” f i v e ” : s e l f . data . m e t r i c f i v e ,
” s i x ” : s e l f . data . m e t r i c s i x }

for name , v a r i a b l e in metricnames . i t e r i t e m s ( ) :
a s s e r t v a r i a b l e . s i z e , \

” metr ic ”+str (name)+” conta in s no data ”

# wr i t e the data by group in t o a s i l o f i l e wi th the
# f i l ename s p e c i f i e d by
# the user .
with h5py . F i l e ( ’%s ’ %f i l ename , ’w ’ ) as f :

fname = f . c r ea t e g roup ( ’ f o rward an i so t ropy ’ )
aname = f . c r ea t e g roup ( ’ a d j o i n t a n i s o t r o p y ’ )
cname = f . c r ea t e g roup ( ’ c o n t r i b u t o n f l u x ’ )
for name , v a r i a b l e in metricnames . i t e r i t e m s ( ) :

mname = f . c r ea t e g roup ( ’ met r i c %s ’ %name)
for group in s e l f . mesh g :

mname . c r e a t e d a t a s e t ( ’ group %03d ’ %group ,\
data=v a r i a b l e [ group ] )

for group in s e l f . mesh g :



APPENDIX A. SOFTWARE FOR THIS PROJECT 180

fname . c r e a t e d a t a s e t ( ’ group %03d ’ %group ,
data=s e l f . f o rward an i so t ropy [ group ] )

aname . c r e a t e d a t a s e t ( ’ group %03d ’ %group ,
data=s e l f . a d j o i n t a n i s o t r o p y [ group ] )

cname . c r e a t e d a t a s e t ( ’ group %03d ’ %group ,
data=s e l f . c o n t r i b u t o n f l u x [ group ] )

def a n i s o t r o p i e s t o s i l o ( s e l f , f i l ename ) :
’ ’ ’ This f unc t i on saves a l l o f the an i s o t r o p i e s in
the problem used f o r
problem d i a gno s t i c s by group to a s i l o f i l e f o r
v i s u a l i z a t i o n purposes .

I f a l l a n i s o t r o p i e s are ca l cu l a t e d , then the f i l e
w i l l i n c l ude metr ic s one through s i x ( see
In t e g r a t o r . q uan t i f y an i s o t r o p y f o r a d e s c r i p t i o n o f
each metr ic ) , the
forward , ad jo in t , and con t r i bu ton an i s o t r op i e s ,
and the con t r i bu ton
s c a l a r f l u x . ’ ’ ’
f i l ename = str ( f i l ename )
os . system ( ’rm %s ’ %( f i l ename ) )

metricnames = {”one” : s e l f . data . metr ic one ,
”two” : s e l f . data . metric two ,
” three ” : s e l f . data . met r i c th ree ,
” four ” : s e l f . data . met r i c f our ,
” f i v e ” : s e l f . data . m e t r i c f i v e ,
” s i x ” : s e l f . data . m e t r i c s i x }

for name , v a r i a b l e in metricnames . i t e r i t e m s ( ) :
a s s e r t v a r i a b l e . s i z e , \

” metr ic ”+str (name)+” conta in s no data ”

# wr i t e the data by group in t o a s i l o f i l e wi th the
# f i l ename s p e c i f i e d by the user .
with S i loMeshFi l e ( ’%s ’ %f i l ename ) as f :

f . write mesh (∗map( const View Fie ld Dbl . fromarray , \
( s e l f . mesh x ,

s e l f . mesh y , s e l f . mesh z ) ) )
f . wr i t e ( ”x” , s e l f .X)
f . wr i t e ( ”y” , s e l f .Y)
f . wr i t e ( ”z” , s e l f . Z)
for group in s e l f . mesh g :

for name , v a r i a b l e in metricnames . i t e r i t e m s ( ) :
f . wr i t e ( ” met r i c %s group %03d” %(name , group ) ,

v a r i a b l e [ group ] )

# i f the forward an i so t ropy has been quan t i f i e d , a l s o wr i t e
# them to the f i l e
i f s e l f . f o rward an i so t ropy . s i z e :
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f . wr i t e ( ” F an i s g roup %03d” %(group ) ,
s e l f . f o rward an i so t ropy [ group ] )

# i f the ad j o i n t an i so t ropy has been quan t i f i e d ,
# wr i t e i t to f i l e too
i f s e l f . a d j o i n t a n i s o t r o p y . s i z e :

f . wr i t e ( ” A ani s group %03d” %(group ) ,
s e l f . a d j o i n t a n i s o t r o p y [ group ] )

# i f con t r i bu ton an i so t ropy quan t i f i e d ,
# wr i t e i t to f i l e too .
i f s e l f . c on t r i bu ton an i s o t r opy . s i z e :

f . wr i t e ( ” C anis group%03d” %(group ) ,
s e l f . c on t r i bu ton an i s o t r opy [ group ] )

# i f con t r i bu ton f l u x quan t i f i e d , wr i t e
# i t to f i l e .
i f s e l f . c o n t r i b u t o n f l u x . s i z e :

f . wr i t e ( ” c o n t r i b u t o n f l u x g r o u p%03d” %(group ) ,
s e l f . c o n t r i b u t o n f l u x [ group ] )

def midpo in t f i nde r ( s e l f , mesh vector ) :
new mesh = np . z e ro s ( len ( mesh vector )−1)
new mesh = ( mesh vector [0:−1]+ mesh vector [ 1 : ] ) / 2
return new mesh

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
i f name == ’ ma in ’ :

main ( )

############################################################################
# end o f Denovo/ t o o l s / i n t e g r a t o r . py
############################################################################

A.2 Anisotropy Quantification

See the function quantify anisotropy in Appendix A.1 on how the anisotropies are calculated.

A.3 Inputs and Scripts

A.3.1 Parametric Study Problems

The characterization problem MCNP and ADVANTG inputs are all available at the public
repository: https://github.com/munkm/caskmodels

The problems were executed from commit hash no.:
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0bc315bf2f49f83627a563f710bf4f586ec3e489

Directions on how to run these problems are available in the repository as well.

A.3.2 Postprocessing Scripts

A suite of postprocessing tools were created to create the figures herein. The tools, the
datasets, and directions on how to recreate the figures in this dissertation are available at:
https://github.com/munkm/thesiscode

The figures in this dissertation were created with the suite of tools at commit hash no.:

28329c86b939d30d2ac236bfccaf026d7e57556d

This repository has three folders:

• notebooks

• scripts

• submission scripts

• data

Submission scripts is the folder containing the .pbs runscripts used to run these prob-
lems on the remote ORNL machine remus. If one has access to a similar machine with the
same queueing system, these will run them on the same number of cores as run in the studies
of this dissertation. Alternatively, there are directions on how to run each problem on a local
machine in that directory.

Scripts contains the scripting tools used to parse the datasets generated by ADVANTG
and Denovo. This suite has plotting tools, MCNP postprocessing tools, statistical analysis
tools to analyze anisotropy metrics, and HDF5 postprocessing tools. The plotting tools can
be used to generate the tally result and relative error histograms, the categorical violin,
strip, or boxplots for each metric, and the comparitive histograms from the angle-informed
study. The scripts folder also has a tool for automatically setting up the parametric study, as
outlined in Section 4.3. The tool includes an automatically generated submission script, for
ease of use for future parametric studies. The flux maps for each problem were generated with
VisIT, which is not an automated process. Future work will be to make these reproducible
as well.

Notebooks contains a few Jupyter notebooks that provide examples on using the plot-
ting tools used in this suite. An interested user can understand how the postprocessing tools
work and categorize data to compare the adjoint, CADIS, and CADIS-Ω methods.

The data folder is mostly empty, but contains a makefile that a user can execute to
automatically download the datasets from this project. This folder also has instructions on
how to use the plotting tools to analyze the data just downloaded. One should be aware
that the datasets from these few problems are still significant, at roughly 800Gb.
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These tools are by no means comprehensive and cover all types of comparative hybrid
methods figures. For example, they will likely not be the best tools with which to analyze
the Forward-Weighted methods. The top level repository contains a README file with the
future features added to the repository.

A.3.3 Supporting Repositories

The violin and scatterplots used throughout this thesis were made with a modified version
of the seaborn frontend to matplotlib. That modification includes adjusting categorials to
be over logrithmic scales. The URL for the modified repository is:
https://github.com/munkm/seaborn
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