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Figure 1: 99Mo Target Designs and Material 

Compositions 
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INTRODUCTION  

 

Molybdenum-99 (Mo-99) is used throughout the 

world in technetium-99m generators for medical 

applications. With the recent unplanned production halt in 

Canada about two years ago and the planned outage in a 

Dutch molybdenum-producing reactor, a shortage of the 

isotope materialized. This shortage has caused many 

diagnostic imaging procedures to be postponed or 

cancelled.  Alternative domestic 
99

Mo production options 

are being considered including irradiation of fissile targets 

in small research reactors such at the Oregon State 

University TRIGA Reactor (OSTR).   

 

PRODUCTION OF 
99

MO IN THE OREGON STATE 

TRIGA REACTOR 

 

Producing 
99

Mo in the OSTR involves placing target 

fuel elements containing low-enriched uranium in the 

outermost regions of core. 
99

Mo is produced as a fission 

product, and is chemically separated from the remaining 

fuel and other fission products. The traditional Centichem 

target design is an aluminum cylinder lined with a 

metallic uranium fuel material (Fig 1a). In this research, 

we analyzed the impact of new target designs involving 

concentric cylindrical regions (Fig 1b) on 
99

Mo 

production. The effects of changing the target fuel 

masses, the target thickness, and the radius of the annular 

regions were also studied. In addition to the changes in 

geometry, we also investigated the impact of various 

materials in the annular design on 
99

Mo production.  

Initially, the traditional Centichem design was altered 

by changing the clad material to beryllium and adding an 

inner beryllium slug. Beryllium as a structural material 

would be beneficial as it undergoes an (n,2n) reaction. 

The expectation was that that this design would produce 

the most 
99

Mo given a specified irradiation time, despite 

its high material costs.  

Filling the inner region with water was another 

method employed to boost the thermal neutron flux 

throughout a target. This provides a larger amount of 

moderator material inside the 
99

Mo target, immediately 

thermalizing neutrons produced within the target, and 

significantly increasing the rate of fission reactions in the 

uranium metal. These design alterations allow more target 

material to be added to each target element, theoretically 

producing more 
99

Mo. 

The active height of the target elements is equivalent 

to that of the active height of the fuel rods in the OSTR, 

38.1 cm. The clad thickness remained constant at .0508 

cm, standard in both fuel elements and 
99

Mo targets.  The 

thickness of the uranium metal target in design (a) was 

varied as a function of mass, increasing from 100g to 

1000g of 20% enriched uranium metal in 100g 

increments. Design (b) was also varied in 100g 

increments, with the inner and outer targets having an 

equal thickness. Thus, the outer annulus holds a larger 

fraction of the target fuel mass.  

Figure 2: Simulated OSTR Core Configuration. Mo-99 

targets placed in graphite slots. 

Uranium Metal 

Water 

Clad Material 

Air 

(a) (b) 
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MCNP5 Simulation of  
99

Mo Production 

 

MCNP5 was used to perform neutron transport 

simulations of 
99

Mo production in the OSTR. The core 

was arranged in a configuration similar to that of the 

current OSTR (Fig. 2) operating core. The target elements 

were placed in the outermost ring of the reactor in all 

positions that would have graphite elements in the 

standard OSTR core. Despite the higher fluxes that exist 

in the center of the core, placing these target elements in 

the outer ring ensures that the fundamental safety-related 

characteristics of the TRIGA reactor are maintained.    

In each simulation, all available sites in the outer ring 

are occupied by 
99

Mo target elements. This allows an 

assessment of the most optimal locations for 
99

Mo 

production. However, operational requirements on core 

excess and shutdown margin would likely preclude such a 

configuration.   

 

RESULTS  

 

Both the power per element and the 
99

Mo produced 

per element were analyzed for each target design, 

assuming a nominal reactor power of 1.0 MWth. Figure 3 

is a plot of relative 
99

Mo production in designs (a) and (b), 

with various target masses and clad materials. The 

beryllium clad design (b) produces the most 
99

Mo per 

element, effectively doubling the production of a 

comparable mass Centichem design. However, the 

stainless steel clad element, with an inner annulus of 

water, still increases the 
99

Mo production by a factor of  

1.5 compared to an equivalent mass Centichem design.  

 

Figure 3: Comparison of Mo-99 Production in Variations of 

Targets (a) and (b) 

Other material factors must also be considered when 

designing a target element. Figure 4 is a plot of relative 
99

Mo produced in design (b) as a function of increasing 

target mass. The 
99

Mo produced does not increase linearly 

with mass due to self-shielding in the target uranium. As a 

result, the finalized target design must balance overall 
99

Mo produced with an economized fuel use.  

 

Figure 4: Effects of Variable Mass on 99Mo Produced in 

Target Design B with Stainless Steel Clad Material 

        

 

 Initial results
 
generally support the change from the 

classic Centichem target design to a design involving 

concentric cylinders. Adding the inner water-filled 

annulus to the original target element also appears to be a 

design improvement, as an increase in thermal neutron 

flux increases the rate of 
99

Mo production, reducing the 

time needed to obtain the desired amounts of 
99

Mo. With 

additional design considerations, such as cost of materials 

and time, the 
99

Mo targets can be altered to provide a safe, 

reliable domestic means of producing 
99

Mo in a small 

research reactor.  
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