FW/CADIS-Ω: An Angle-Informed Hybrid Method for Deep-Penetration Radiation Transport

> Madicken Munk October 19, 2016 Departmental Colloquium University of Tennessee, Knoxville

College of Engineering

Who am I?

Berkeley UNIVERSITY OF CALIFORNIA

Research Highlights: FHR

Research Highlights: SUERC & BGC

UNIVERSITY OF CALIFORNIA4

Present Work

Hybrid Methods for Strongly Anisotropic Deep-Penetration Radiation Transport

Talk Outline

- Introduction and motivation
- Hybrid methods background
 - Adjoint and importance
 - CADIS / FW-CADIS
 - Existing state of angle-informed methods
- The Ω method
 - Method theory
 - Software implementation
 - Results on an example problem

Motivation

- Radiation shielding has applications in a number of fields
- "Analog" Monte Carlo for these types of problems is not ideal
 - Lots of particles \rightarrow good statistics

Variance Reduction

Hybrid Methods

My Work

- Good shielding \rightarrow very few particles
- Hybrid methods leverage benefits of deterministic codes to accelerate Monte Carlo
 - A number of problems have strong angular anisotropies
 - The importance of a particle (whether it is likely
 - to contribute to a result) varies with direction
 - Tracking in a low-importance direction is inefficient

7

Research Objectives

- Create a new method to capture angular information in an importance map for Monte Carlo variance reduction
- 2. Compare the new method against existing hybrid methods
- 3. Determine the sensitivity of the new method to deterministic calculation fidelity and problem geometry

Hybrid Methods: Introduction

- Deterministic calculation used to generate importance map
- Importance map -> Monte Carlo -> improves precision and speed
- Importance: contribution to a tally
- Common solution: use deterministically-obtained adjoint solution for importance map

Adjoint and Importance

Forward NTE

$$\hat{\Omega} \cdot \nabla \psi(\overrightarrow{r}, E, \ \hat{\Omega}) + \Sigma_t(\overrightarrow{r}, E) \psi(\overrightarrow{r}, E, \ \hat{\Omega}) = \int_{4\pi} \int_0^\infty \Sigma_s(E' \to E, \ \hat{\Omega}' \to \hat{\Omega}) \psi(\overrightarrow{r}, E', \ \hat{\Omega}') dE' d \ \hat{\Omega}' + q_e(\overrightarrow{r}, E, \ \hat{\Omega})$$

Adjoint NTE $-\hat{\Omega} \cdot \nabla \psi^{\dagger}(\vec{r}, E, \hat{\Omega}) + \Sigma_{t}(\vec{r}, E)\psi^{\dagger}(\vec{r}, E, \hat{\Omega}) =$ $\int_{4\pi} \int_{0}^{\infty} \Sigma_{s}(E \rightarrow E', \hat{\Omega} \rightarrow \hat{\Omega}')\psi^{\dagger}(\vec{r}, E', \hat{\Omega}')dE' d\hat{\Omega}' + q_{e}^{\dagger}(\vec{r}, E, \hat{\Omega})$ Reversal of energy Reversal of direction • The adjoint solution can be used to make an importance map for a desired outcome • An exact adjoint solution can be used to obtain a zero variance Monte Carlo solution

Adjoint and Importance

Notation definition:

 $\langle a \ b \rangle = \int a(P)b(P)dP$

Detector response:

$$R = \langle \sigma_d \psi \rangle$$
$$= \langle q^{\dagger} \psi \rangle$$
$$= \langle q \psi^{\dagger} \rangle$$

Point source:

$$q(\vec{r}, E, \hat{\Omega}) = \delta(\vec{r} - \vec{r_0}) \delta(E - E_0) \delta(\hat{\Omega} - \hat{\Omega}_0)$$

```
Response = adjoint flux:

R = \psi^{\dagger}(\overline{r_0}, E_0, \hat{\Omega}_0)
```


CADIS (Consistent Adjoint Driven Importance Sampling)

Biased source distribution

$$\hat{q}(\overrightarrow{r},E) = \frac{\phi^{\dagger}(\overrightarrow{r},E)q(\overrightarrow{r},E)}{R}$$

Starting weight of the particles

$$w_0(\overrightarrow{r}, E) = \frac{q(\overrightarrow{r}, E)}{\hat{q}(\overrightarrow{r}, E)} = \frac{R}{\phi^{\dagger}(\overrightarrow{r}, E)}$$

Weight window target values

$$w(\overrightarrow{r}, E) = \frac{R}{\phi^{\dagger}(\overrightarrow{r}, E)}$$

(Forward Weighted) FW-CADIS

- Reduces variance for global solutions by creating an even particle distribution across problem
- Different adjoint source for different goals

UNIVERSITY OF CALIFORNIA

For the calculation of:	Expression	Adjoint source
Energy and spatial dependent flux (global problem)	$\phi(\overrightarrow{r},E)$	$q^{+}(\overrightarrow{r}, E) = \frac{1}{\phi(\overrightarrow{r}, E)}$
Spatial dependent total flux (semi- global)	$\int \phi(\overrightarrow{r},E) dE$	$q^{+}(\overrightarrow{r}) = \frac{1}{\int \phi(\overrightarrow{r}, E) dE}$
Spatial dependent total dose (semi- global)	$\int \phi(\vec{r}, E) \sigma_d(\vec{r}, E) dE$	$q^{+}(\overrightarrow{r},E) = \frac{\sigma_{d}(\overrightarrow{r},E)}{\int \sigma_{d}(\overrightarrow{r},E)\phi(\overrightarrow{r},E)dE}$
erkelev	madicken@berkeley.edu	. 13

These methods are great, but....

FW-CADIS

They don't capture angle

Angular Information Matters

Existing Angle-Informed Biasing

- Local Importance Function Transform (LIFT)
- AVATAR
- Simple angular CADIS
 - With directional source biasing
 - Without directional source biasing
- Automatic WW generator (MCNP)

Research Project Outline

- 1. Implement method to adjust adjoint scalar flux to get an angle-informed importance map
- 2. Compare methods to traditional CADIS and FW-CADIS
 - Success metrics: FOM, uncertainty distribution
- 3. Characterize and test the method
 - a. Use validation problems to determine limitations
 - b. Use challenge problems with increasing complexity to show applicability

Implementation: The Ω Flux

Uses angular flux \rightarrow more angular information is captured in importance map

 $\phi_{\Omega}^{+}(\vec{r}, E) = \frac{\int \psi(\vec{r}, E, \hat{\Omega}) \psi^{+}(\vec{r}, E, \hat{\Omega}) d\hat{\Omega}}{\int \psi(\vec{r}, E, \hat{\Omega}) d\hat{\Omega}}$

Generates adjusted adjoint scalar flux \rightarrow can be adapted for existing hybrid methods

reev

Weights adjoint by the forward flux \rightarrow importance map includes direction of particle flow

Our System:

Results: Simple Labyrinth

Problem specific:

- 10 MeV point source
- NaI detector
- Concrete barrier
- Air
- Vacuum boundary conditions

Monte Carlo Specific:

- NaI reaction rate tallied with track length tally (f4)
- Tally refined by energy bin (consistent with advantg binning)

Denovo Specific:

- 27g19n XS library
- QR quadrature
- SC (Step Characteristic) spatial solver
- P_N order 3

Forward and Adjoint fluxes

Forward Flux (group 00)

Adjoint Flux (group 26)

Berkeley

CADIS and CADIS- Ω Importance Maps

Berkeley

Results

... Indicate that CADIS- Ω outperforms CADIS for this problem

Results

... Indicate that CADIS- Ω outperforms CADIS for this problem

Results Varying P_N Order

Table I	Table I: Method Performance Change with P _N Order			
P _N Order	Туре	MCNP time (minutes)	Denovo time (minutes)	Monte Carlo FOM
	Analog	62.4	0.0	523.0
Two	CADIS	409.7	40.3	12.0
100	CADIS-Ω	326.2	80.7	138.0
Three	CADIS	483.4	41.5	5.1
Three	CADIS-Ω	408.9	83.0	145.0
Four	CADIS	400.7	45.5	6.2
	CADIS-Ω	266.6	91.0	291.0

Results Varying Quadrature Order

Table II: Me	Fable II: Method Performance Change with Quadrature Order			
Quadrature Order	Туре	MCNP time (minutes)	Denovo time (minutes)	Monte Carlo FOM
	Analog	62.4	0.0	523.0
Six	CADIS	3325.5	22.0	2.20E-02
51X	CADIS-Ω	558.1	43.9	122.0
Ten	CADIS	483.4	41.5	5.1
TCH	CADIS-Ω	408.9	83.0	145.0
Fourteen	CADIS	514.4	76.0	3.2
	CADIS-Ω	423.1	152.0	129.0

Testing The Method: Characterization Problems

Problem Name		Problem Coverage		
	Streaming Paths	Highly Scattering	Highly Heterogeneous	Mono- Directional Source
Streaming Channel	X		Х	Х
Metal Plate		Х	Х	
Spherical Boat	X	Х	Х	Х
Labyrinth Variants	X	Х	Х	

Increasing complexity

Simple Geometries with Real World Applications

.. And Extended to Increasingly Complex Systems

.. To Show Applicability to Real World Problems

SLICE THROUGH	I PLANE OF Y=78.8, W	HOLE GEOMETRY	
li ti ti p			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
1 State			
and the second se			
1 State			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
100 B			
100 B			
100 B 100 B 100 B			

Concluding Remarks

The CADIS- Ω method:

- Captures problem physics more effectively by normalizing the contributon flux by the forward flux.
- Demonstrates an ability to more **evenly distribute the uncertainty** distribution in an f4 tally.
- Has significantly **stronger performance than CADIS** for a deep-penetration shielding problem.
- Exhibits a **dampening of ray effects** in regions where the forward and adjoint fluxes are perpendicular.
- Has effective **capture of streaming behavior** out of problem ducts.
- Does **not completely negate low-importance regions** (e.g. the region behind the detector in the void BC problem)
- FOM comparison to the analog MC maze is consistently lower; for other problems this may not be the case.

Acknowledgements

Research Advisor:

Prof. Rachel Slaybaugh

Our Funding Source:

This material is based on work supported by the Department of Energy under award number DE-NE0008286

Berkeley conspirators:

Garrett Baltz, the O.G. U.G.

Dr. Richard Vasques

Special thanks to:

Dr. Tara Pandya

Dr. Seth Johnson

Dr. Tom Evans

Questions?

References by Slide No. (1/3)

7: Variance Reduction for Monte Carlo

 J. S. Hendricks and T. E. Booth, "MCNP variance reduction overview," in Monte-Carlo Methods and Applications in Neutronics, Photonics and Statistical Physics, Springer, 1985, pp. 83–92.

9: Adjoint and Importance

- R. R. Coveyou, V. R. Cain, and K. J. Yost, "Adjoint and importance in Monte Carlo application," *Nuclear Science and Engineering*, vol. 27, no. 2, pp. 219–234, 1967.
- J. Lewins, "IMPORTANCE: THE ADJOINT FUNCTION. THE PHYSICAL BASIS OF VARIATIONAL AND PERTURBATION THEORY IN TRANSPORT AND DIFFUSION PROBLEMS.," 1965.

10: Zero Variance solution

- S. A. Turner and E. W. Larsen, "Automatic variance reduction for three-dimensional Monte Carlo simulations by the local importance function transform-I: Analysis," *Nuclear science and engineering*, vol. 127, no. 1, pp. 22–35, 1997.
- M. H. Kalos, "Importance Sampling in Monte Carlo Shielding Calculations: I. Neutron Penetration Through Thick Hydrogen Slabs," Nuclear Science and Engineering, vol. 16, no. 2, pp. 227–234, 1963.
- G. Goertzel and M. H. Kalos, "Monte Carlo methods in transport problems," *Progress in nuclear energy*, vol. 2, pp. 315–369, 1958.

11: CADIS

- J. C. Wagner and A. Haghighat, "Automatic Variance Reduction for Monte Carlo Shielding Calculations with the Discrete Ordinates Adjoint Function," *Proc. Joint. Int. Conference on Mathematical Methods and Supercomputing in Nuclear Applications*, vol. 1, p. 67, 1997.
- J. C. Wagner and A. Haghighat, "Automated variance reduction of Monte Carlo shielding calculations using the discrete ordinates adjoint function," *Nuclear Science and Engineering*, vol. 128, no. 2, pp. 186–208, 1998.
- A. Haghighat and J. C. Wagner, "Monte Carlo variance reduction with deterministic importance functions," *Progress in Nuclear Energy*, vol. 42, no. 1, pp. 25–53, 2003.

12: FW-CADIS

- J. C. Wagner, E. D. Blakeman, and D. E. Peplow, "Forward-weighted CADIS method for global variance reduction," TRANSACTIONS-AMERICAN NUCLEAR SOCIETY, vol. 97, p. 630, 2007.
- J. C. Wagner, E. D. Blakeman, and D. E. Peplow, "Forward-weighted CADIS method for variance reduction of Monte Carlo calculations of distributions and multiple localized quantities," in *Proceedings of the 2009 Int. Conference on Advances in Mathematics, Computational Methods, and Reactor Physics, Saratoga Springs, NY*, 2009.
- J. C. Wagner and S. W. Mosher, "Forward-Weighted CADIS Method for Variance Reduction of Monte Carlo Reactor Analyses," *Transactions of the American Nuclear Society*, vol. 103, pp. 342–345, 2010.

References by Slide No. (2/3)

14: Spherical Boat and Importance Map

 D. E. Peplow, S. W. Mosher, and T. M. Evans, "Consistent Adjoint Driven Importance Sampling using Space, Energy, and Angle," Oak Ridge National Laboratory, ORNL/TM-2012/7, Aug. 2012.

15: LIFT

- S. A. Turner and E. W. Larsen, "Automatic variance reduction for three-dimensional Monte Carlo simulations by the local importance function transform-I: Analysis," *Nuclear science and engineering*, vol. 127, no. 1, pp. 22–35, 1997.
- S. A. Turner and E. W. Larsen, "Automatic variance reduction for three-dimensional Monte Carlo simulations by the local importance function transform-II: Numerical results," *Nuclear science and engineering*, vol. 127, no. 1, pp. 36–53, 1997.

AVATAR

 K. A. Van Riper, T. J. Urbatsch, and P. D. Soran, "AVATAR–Automatic variance reduction in Monte Carlo calculations," Los Alamos National Lab., NM (United States), 1997.

Simple Angular CADIS

D. E. Peplow, S. W. Mosher, and T. M. Evans, "Consistent Adjoint Driven Importance Sampling using Space, Energy, and Angle," Oak Ridge National Laboratory, ORNL/TM-2012/7, Aug. 2012.

WW Generator

 J. S. Hendricks and T. E. Booth, "MCNP variance reduction overview," in *Monte-Carlo Methods* and *Applications in Neutronics, Photonics and Statistical Physics*, Springer, 1985, pp. 83–92.

References by Slide No. (3/3)

18/19 : Denovo

 T. M. Evans, A. S. Stafford, R. N. Slaybaugh, and K. T. Clarno, "Denovo: A new threedimensional parallel discrete ordinates code in SCALE," *Nuclear technology*, vol. 171, no. 2, pp. 171–200, 2010.

ADVANTG

 J. C. Wagner, "An automated deterministic variance reduction generator for Monte Carlo shielding applications," in *Proceedings of the American Nuclear Society 12th Biennial RPSD Topical Meeting*, 2002, pp. 14–18.

MCNP

R. A. Forster, L. J. Cox, R. F. Barrett, T. E. Booth, J. F. Briesmeister, F. B. Brown, J. S. Bull, G. C. Geisler, J. T. Goorley, R. D. Mosteller, and others, "MCNP[™] version 5," *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms*, vol. 213, pp. 82–86, 2004.

21: Ray Effects Image

 T. M. Evans, A. S. Stafford, R. N. Slaybaugh, and K. T. Clarno, "Denovo: A new threedimensional parallel discrete ordinates code in SCALE," *Nuclear technology*, vol. 171, no. 2, pp. 171–200, 2010.

22: Kobayashi Benchmark

 K. Kobayashi, N. Sugimura, and Y. Nagaya, "3D radiation transport benchmark problems and results for simple geometries with void region," *Progress in Nuclear Energy*, vol. 39, no. 2, pp. 119–144, 2001.

23: Dry Cask Geometries

Unpublished. Generated by Garret Baltz, student at UCB